The Na(+)/H(+) exchanger regulatory factor (NHERF) is constitutively phosphorylated in cells, but the site(s) of this phosphorylation and the kinase(s) responsible for it have not been identified. We show here that the primary site of constitutive NHERF phosphorylation in human embryonic kidney 293 (HEK-293) cells is Ser(289), and that the stoichiometry of phosphorylation is near 1 mol/mol. NHERF contains two PDZ domains that recognize the sequence S/T-X-L at the carboxyl terminus of target proteins, and thus we examined the possibility that kinases containing this motif might associate with and phosphorylate NHERF. Overlay experiments and co-immunoprecipitation studies revealed that NHERF binds with high affinity to a splice variant of the G protein-coupled receptor kinase 6, GRK6A, which terminates in the motif T-R-L. NHERF does not associate with GRK6B or GRK6C, alternatively spliced variants that differ from GRK6A at their extreme carboxyl termini. GRK6A phosphorylates NHERF efficiently on Ser(289) in vitro, whereas GRK6B, GRK6C, and GRK2 do not. Furthermore, the endogenous "NHERF kinase" activity in HEK-293 cell lysates is sensitive to treatments that alter the activity of GRK6A. These data suggest that GRK6A phosphorylates NHERF via a PDZ domain-mediated interaction and that GRK6A is the kinase in HEK-293 cells responsible for the constitutive phosphorylation of NHERF.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.34.24328DOI Listing

Publication Analysis

Top Keywords

nherf
9
protein-coupled receptor
8
receptor kinase
8
na+/h+ exchanger
8
exchanger regulatory
8
regulatory factor
8
pdz domain-mediated
8
domain-mediated interaction
8
hek-293 cells
8
nherf pdz
8

Similar Publications

The sodium phosphate cotransporter-2A (NPT2A) mediates basal and parathyroid hormone (PTH)- and fibroblast growth factor-23 (FGF23)-regulated phosphate transport in proximal tubule cells of the kidney. Both basal and hormone-sensitive transport require sodium hydrogen exchanger regulatory factor-1 (NHERF1), a scaffold protein with tandem PDZ domains, PDZ1 and PDZ2. NPT2A binds to PDZ1.

View Article and Find Full Text PDF

Mature hippocampal astrocytes exhibit a linear current-to-voltage (I-V) K membrane conductance called passive conductance. It is estimated to enable astrocytes to keep potassium homeostasis in the brain. We previously reported that the TWIK-1/TREK-1 heterodimeric channels are crucial for astrocytic passive conductance.

View Article and Find Full Text PDF

Proteomic Characterization of Urinary Exosomes with Pancreatic Cancer by Phosphatidylserine Imprinted Polymer Enrichment and Mass Spectrometry Analysis.

J Proteome Res

January 2025

Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China.

Exosomes, as carriers of cell-to-cell communication, can serve as promising biomarkers for probing the early diagnosis of cancer. Pancreatic cancer is a common malignant tumor of the pancreas with an insidious onset and difficult early diagnosis. The aim of this study was to capture exosomes in urine samples by phosphatidylserine-molecularly imprinted polymers (PS-MIPs).

View Article and Find Full Text PDF
Article Synopsis
  • * This study explores how NHERF1 expression influences miRNA levels and gene regulation, particularly regarding fibrosis and cytokine production in aging kidneys.
  • * The results reveal that NHERF1 knockout mice show significant decreases in certain miRNAs and increases in cytokines, indicating that NHERF1 loss alters miRNA-mediated regulation of cytokine expression through pathways involving NFAT transcription factors.
View Article and Find Full Text PDF

Testosterone is secreted by Leydig cells (LCs), which play an important physiological role in preserving male secondary sex characteristics, protecting male reproductive function, and establishing the blood-testis barrier. Studies have shown that autophagy is particularly active in LCs; however, its involvement in testosterone synthesis in porcine LCs has not been fully explored. Therefore, this experiment aimed to investigate the influence of autophagy on testosterone secretion in porcine LCs and its potential regulatory mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!