The adenovirus oncoprotein E1a stimulates binding of transcription factor ETF to transcriptionally activate the p53 gene.

J Biol Chem

Department of Pathology, Dunedin School of Medicine, University of Otago, P. O. Box 913, Dunedin 9000, New Zealand.

Published: August 1999

Expression of the tumor suppressor protein p53 plays an important role in regulating the cellular response to DNA damage. During adenovirus infection, levels of p53 protein also increase. It has been shown that this increase is due not only to increased stability of the p53 protein but to the transcriptional activation of the p53 gene during infection. We demonstrate here that the E1a proteins of adenovirus are responsible for activating the mouse p53 gene and that both major E1a proteins, 243R and 289R, are required for complete activation. E1a brings about the binding of two cellular transcription factors to the mouse p53 promoter. One of these, ETF, binds to three upstream sites in the p53 promoter and one downstream site, whereas E2F binds to one upstream site in the presence of E1a. Our studies indicate that E2F binding is not essential for activation of the p53 promoter but that ETF is. Our data indicate the ETF site located downstream of the start site of transcription is the key site in conferring E1a responsiveness on the p53 promoter.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.34.23777DOI Listing

Publication Analysis

Top Keywords

p53 promoter
16
p53 gene
12
p53
10
p53 protein
8
activation p53
8
e1a proteins
8
mouse p53
8
promoter etf
8
e1a
6
site
5

Similar Publications

Intrinsic p53 activation restricts gammaherpesvirus driven germinal center B cell expansion during latency establishment.

Nat Commun

January 2025

Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.

Gammaherpesviruses are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus and murine gammaherpesvirus 68, this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined.

View Article and Find Full Text PDF

Introduction: 5-aminolevulinic acid (5-ALA) fluorescence used in glioma surgery has different intensities within tumors and among different patients, some molecular and external factors have been implicated, but there is no clear evidence analyzing the difference of fluorescence according to glioma molecular characteristics. This study aimed to compare molecular factors of glioma samples with fluorescence intensity to identify potential cofounders and associations with clinically relevant tumor features.

Methods: Tumor samples of high-grade glioma patients operated using 5-ALA for guided resection were included for comparative analysis of fluorescence intensity and molecular features.

View Article and Find Full Text PDF

Long Interspersed Nuclear Element 1 (LINE1/L1) retrotransposons, which comprise 17% of the human genome, typically remain inactive in healthy somatic cells but are reactivated in several cancers. We previously demonstrated that p53 silences L1 transposons in human somatic cells, potentially acting as a tumor-suppressive mechanism. However, the precise molecular mechanisms underlying p53-mediated repression of L1 and its life cycle intermediates remain unclear.

View Article and Find Full Text PDF

FOXM1 promotes malignant biological behavior and metabolic reprogramming by targeting SPINK1 in hepatocellular carcinoma and affecting the p53 pathway.

Biochim Biophys Acta Mol Basis Dis

January 2025

Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu, PR China. Electronic address:

This study investigates the role of SPINK1 in liver cancer and its regulatory relationship with FOXM1. Using differential gene analysis in the GEO database, SPINK1 was identified as overexpressed in liver cancer tissues and associated with poor prognosis, confirmed via PCR. Functional assays demonstrated that SPINK1 knockdown reduced proliferation, migration, and invasion in liver cancer cells, while promoting apoptosis.

View Article and Find Full Text PDF

Interaction of STIL with FOXM1 regulates SF3A3 transcription in the hepatocellular carcinoma development.

Cell Div

January 2025

Second Department of General Surgery, the First Hospital of Qiqihar, No. 700, Pukui avenue, Long sha District, Qiqihar, Heilongjiang, 161000, P. R. China.

Background: Dysregulation of SF3A3 has been related to the development of many cancers. Here, we investigated the functional role of SF3A3 in hepatocellular carcinoma (HCC).

Methods: SF3A3 expression in HCC tissues and cell lines was examined using RT-qPCR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!