Mutagenic activity and DNA adduct formation by 1, 2-epoxy-3-(p-nitrophenoxy)propane, an HIV-1 protease inhibitor and GST substrate.

Biochem Biophys Res Commun

Department of Community and Environmental Medicine, College of Medicine, Irvine, California, 92697-1820, USA.

Published: August 1999

Acid protease inhibitor 1,2-epoxy-3-(p-nitrophenoxy)propane (ENPP) is commonly used in research as a substrate for glutathione-S-transferase activity (GST) and recently was found to inhibit human immunodeficiency virus 1 (HIV-1) protease. The question of DNA-adduct formation and mutagenicity was investigated and found that ENPP causes DNA damage and acts directly to induce mutagenicity in Salmonella. Using HPLC analysis, ENPP was shown to bind covalently to guanine residues. The Salmonella mutagenicity assay indicated that ENPP enhanced the mutation frequencies in the base-substitution strain TA00 by more than 20 times above the background. Its mutagenic potency was comparable to that of well-known carcinogens, N-methyl-N-nitrosourea (MNU) and aflatoxin B(1)-8,9-epoxide (AFB(1)-8,9-epoxide). The results suggest that ENPP should be classified as a mutagenic compound and a potential carcinogen.

Download full-text PDF

Source
http://dx.doi.org/10.1006/bbrc.1999.1100DOI Listing

Publication Analysis

Top Keywords

hiv-1 protease
8
protease inhibitor
8
enpp
5
mutagenic activity
4
activity dna
4
dna adduct
4
adduct formation
4
formation 2-epoxy-3-p-nitrophenoxypropane
4
2-epoxy-3-p-nitrophenoxypropane hiv-1
4
inhibitor gst
4

Similar Publications

Enhanced sampling of protein conformational changes via true reaction coordinates from energy relaxation.

Nat Commun

January 2025

Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA.

The bottleneck in enhanced sampling lies in finding collective variables that effectively accelerate protein conformational changes; true reaction coordinates that accurately predict the committor are the well-recognized optimal choice. However, identifying them requires unbiased natural reactive trajectories, which, paradoxically, require effective enhanced sampling. Using the generalized work functional method, we uncover that true reaction coordinates control both conformational changes and energy relaxation, enabling us to compute them from energy relaxation simulations.

View Article and Find Full Text PDF

Indonesia has one of the highest HIV infection rates in Southeast Asia. The use of dolutegravir, an integrase strand transfer inhibitor (INSTI), as a first-line treatment underscores the need for detailed data on INSTI drug resistance mutations (DRMs). Currently, there is a lack of comprehensive data on DRMs INSTI and other HIV drug resistance in Indonesian patients, both pre- and post-treatment.

View Article and Find Full Text PDF

HIV OctaScanner: A Machine Learning Approach to Unveil Proteolytic Cleavage Dynamics in HIV-1 Protease Substrates.

J Chem Inf Model

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.

The rise of resistance to antiretroviral drugs due to mutations in human immunodeficiency virus-1 (HIV-1) protease is a major obstacle to effective treatment. These mutations alter the drug-binding pocket of the protease and reduce the drug efficacy by disrupting interactions with inhibitors. Traditional methods, such as biochemical assays and structural biology, are crucial for studying enzyme function but are time-consuming and labor-intensive.

View Article and Find Full Text PDF

Visceral leishmaniasis (VL) is an opportunistic infection in HIV patients with higher relapse and mortality rate. The number of HIV-VL patients is comparatively higher in areas where both infections are endemic. However, the conventional chemotherapeutic agents have limited success due to drug toxicity, efficacy variance and overall cost of treatment.

View Article and Find Full Text PDF

The integration of nanotechnology into antiretroviral drug delivery systems presents a promising avenue to address challenges posed by long-term antiretroviral therapies (ARTs), including poor bioavailability, drug-induced toxicity, and resistance. These limitations impact the therapeutic effectiveness and quality of life for individuals living with HIV. Nanodrug delivery systems, particularly nanoemulsions, have demonstrated potential in improving drug solubility, enhancing bioavailability, and minimizing systemic toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!