Commitment of members of the monocyte/macrophage family to the bone resorptive phenotype, in vitro, requires contact, of these osteoclast precursors, with osteoblasts or related stromal cells. The osteoclast-inductive properties of these stromal cells are typically expressed, however, only in the presence of steroid hormones such as 1,25 dihydroxyvitamin D (1,25D3) and dexamethasone (DEX). To gain insight into the means by which steroid treated accessory cells induce osteoclast differentiation we asked, using differential RNA display (DRD), if gene expression by this stromal cell population differs from that of their untreated, non-osteoclastogenic counterpart. We identified four known genes specifically expressed by 1,25D3/DEX-treated ST2 stromal cells: 1) a family of rat organic anion transporters, 2) Na/K ATPase ss-subunit, 3) tazarotene-induced gene 2 (TIG2), and 4) prostaglandin G/H synthase I, or cyclooxygenase 1 (Cox-1). The regulation of these genes in 1,25D3/DEX-treated ST2 cells was demonstrated by Northern blot analysis of treated (osteoclast-supporting) and untreated (non-osteoclast-supporting) ST2 cells; the genes have a limited and specific tissue mRNA expression pattern. Northern blot analysis of treated and untreated ST2 cell total RNA using either a DRD-derived Cox-1 cDNA or a Cox-1 specific oligonucleotide confirmed the steroid regulation of Cox-1 mRNA. Surprisingly, there is no detectable expression by untreated or steroid exposed ST2 cells, of Cox-2, the classical regulated cyclooxygenase isoform. In contrast to 1, 25D3/DEX, serum treatment rapidly induces Cox-2 mRNA, substantiating the capacity of ST2 cells to express the gene. These data establish that steroid induction of the osteoclastogenic properties of stromal cells is attended by Cox gene expression, a phenomenon consistent with the capacity of eicosinoids to impact the resorptive process. The response of osteoclast-supporting ST2 cells to 1,25D3/DEX treatment may be one prostaglandin-mediated event which specifically involves Cox-1 regulation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

stromal cells
20
st2 cells
20
cells
11
125 dihydroxyvitamin
8
properties stromal
8
gene expression
8
125d3/dex-treated st2
8
cox-1 regulation
8
northern blot
8
blot analysis
8

Similar Publications

Unlocking the Therapeutic Code of Mesenchymal Stromal Cells.

Am J Respir Crit Care Med

January 2025

Cardiovascular Research Institute (CVRI), University of San Francisco, Medicine and Anesthesia, San Francisco, California, United States.

View Article and Find Full Text PDF

The applications of artificial intelligence (AI) and deep learning (DL) are leading to significant advances in cancer research, particularly in analysing histopathology images for prognostic and treatment-predictive insights. However, effective translation of these computational methods requires computational researchers to have at least a basic understanding of histopathology. In this work, we aim to bridge that gap by introducing essential histopathology concepts to support AI developers in their research.

View Article and Find Full Text PDF

Corneal Stromal Stem Cell-Derived Extracellular Vesicles Attenuate ANGPTL7 Expression in the Human Trabecular Meshwork.

Transl Vis Sci Technol

January 2025

Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

Purpose: Regulating intraocular pressure (IOP), mainly via the trabecular meshwork (TM), is critical in developing glaucoma. Whereas current treatments aim to lower IOP, directly targeting the dysfunctional TM tissue for therapeutic intervention has proven challenging. In our study, we utilized Dexamethasone (Dex)-treated TM cells as a model to investigate how extracellular vesicles (EVs) from immortalized corneal stromal stem cells (imCSSCs) could influence ANGPTL7 and MYOC genes expression within TM cells.

View Article and Find Full Text PDF

One of the most obvious manifestations of the negative impact of space flight factors on the human physiology is osteopenia. With the active development of manned space flights and the increase in the duration of humans' persistence in weightlessness, there is a growing need to understand the mechanisms of changes occurring at the cellular level involved in the replenishment of bone tissue. Using the RNA sequencing method, changes in the transcriptome profile of MMSCs were studied after a 5-day simulation of the microgravity effects.

View Article and Find Full Text PDF

Background: Exosomes sourced from mesenchymal stem cells (MSC-EXOs) have become a promising therapeutic tool for sepsis-induced myocardial dysfunction (SMD). Our previous study demonstrated that Apelin pretreatment enhanced the therapeutic benefit of MSCs in myocardial infarction by improving their paracrine effects. This study aimed to determine whether EXOs sourced from Apelin-pretreated MSCs (Apelin-MSC-EXOs) would have potent cardioprotective effects against SMD and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!