Identification of residues in the CH2/CH3 domain interface of IgA essential for interaction with the human fcalpha receptor (FcalphaR) CD89.

J Biol Chem

Department of Molecular and Cellular Pathology, University of Dundee Medical School, Ninewells Hospital, Dundee DD1 9SY, United Kingdom.

Published: August 1999

Cellular receptors for IgA (FcalphaR) mediate important protective functions. An extensive panel of site-directed mutant IgAs was used to identify IgA residues critical for FcalphaR (CD89) binding and triggering. Although a tailpiece-deleted IgA1 was able to bind and trigger CD89, antibodies featuring CH3 domain exchanges between human IgA1 and IgG1 could not, indicating that both domains but not the tailpiece are required for FcalphaR recognition. To further investigate the role of the interdomain region, numerous IgA1s, each with a point substitution in either of two interdomain loops (Leu-257-Gly-259 in Calpha2; Pro-440-Phe-443 in Calpha3), were generated. With only one exception (G259R), substitutions produced either ablation (L257R, P440A, A442R, F443R) or marked reduction (P440R) in CD89 binding and triggering. Further support for involvement of these interdomain loops was provided by interspecies comparisons of IgA. Thus a human IgA1 mutant, LA441-442MN, which mimicked the mouse IgA loop sequence through substitution of two adjacent residues in the Calpha3 loop, was found, like mouse IgA, not to bind CD89. In contrast, bovine IgA1, identical to human IgA1 within these interdomain loops despite numerous differences elsewhere in the Fc region, did bind CD89. We have thus identified motifs in the interdomain region of IgA Fc critical for FcalphaR binding and triggering, significantly enhancing present understanding of the molecular basis of the IgA-FcalphaR interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.33.23508DOI Listing

Publication Analysis

Top Keywords

binding triggering
12
human iga1
12
interdomain loops
12
fcalphar cd89
8
critical fcalphar
8
cd89 binding
8
interdomain region
8
mouse iga
8
bind cd89
8
iga
7

Similar Publications

Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential.

View Article and Find Full Text PDF

The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.

View Article and Find Full Text PDF

TRIF-TAK1 signaling suppresses caspase-8/3-mediated GSDMD/E activation and pyroptosis in influenza A virus-infected airway epithelial cells.

iScience

January 2025

College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China.

Pyroptosis plays an important role in attracting innate immune cells to eliminate infected niches. Our study focuses on how influenza A virus (IAV) infection triggers pyroptosis in respiratory epithelial cells. Here, we report that IAV infection induces pyroptosis in a human and murine airway epithelial cell line.

View Article and Find Full Text PDF

Background: Development of acute kidney injury (AKI) in patients with sepsis is associated with increased mortality, highlighting the importance of early detection and management. However, baseline creatinine or urine output measurements are required for AKI diagnosis, which can be challenging in emergency departments (EDs). We aimed to evaluate the association between urinary biomarkers and the AKI diagnosis or 30-day survival status in patients with sepsis in the ED.

View Article and Find Full Text PDF

Sialyl Lewis Glycomimetics as E- and P-Selectin Antagonists Targeting Hyperinflammation.

ACS Med Chem Lett

January 2025

Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada.

Inflammatory disorders, such as sepsis, pancreatitis, and severe COVID-19, often cause immune dysfunction and high mortality. These conditions trigger excessive immune cell influx, leading to cytokine storms, organ damage, and compensatory immune suppression that results in immunoparalysis, organ dysfunction, and reinfection. Controlled and reversible immunosuppression limiting immune cell recruitment to inflammation sites could reduce hyperinflammation and prevent immune exhaustion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!