In a recent paper (Wenderoth et al., J Biol Chem 272: 26985-26990, 1997) we reported that the positions of the two redox regulatory cysteines identified in a plastidic G6PD isoform from potato (Solanum tuberosum L.) differ substantially from those conserved in cyanobacterial G6PDH sequences. To investigate the origin of redox regulation in G6PDH enzymes from photoautotrophic organisms, we isolated and characterized several G6PD cDNA sequences from higher plants and from a green and a red alga. Alignments of the deduced amino acid sequences showed that the cysteine residues cluster in the coenzyme-binding domain of the plastidic isoforms and are conserved at three out of six positions. Comparison of the mature proteins and the signal peptides revealed that two different plastidic G6PDH classes (P1 and P2) evolved from a common ancestral gene. The two algal sequences branch off prior to this class separation in higher plants, sharing about similar amino acid identity with either of the two plastidic G6PDH classes. The genes for cytosolic plant isoforms clearly share a common ancestor with animal and fungal G6PDH homologues, whereas the cyanobacterial isoforms branch within the eubacterial G6PDH sequences. The data suggest that cysteine-mediated redox regulation arose independently in G6PDH isoenzymes of eubacterial and eukaryotic lineages.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1006257230779DOI Listing

Publication Analysis

Top Keywords

redox regulation
12
higher plants
12
g6pdh
8
regulation g6pdh
8
g6pdh sequences
8
amino acid
8
plastidic g6pdh
8
g6pdh classes
8
sequences
5
evidence functional
4

Similar Publications

Ferroptosis is one of the cell death programs occurring after spinal cord injury (SCI) and is driven by iron-dependent phospholipid peroxidation. However, little is known about its underlying regulation mechanism. The present study demonstrated that lipid peroxidation was promoted in patients with SCI.

View Article and Find Full Text PDF

Regulating Nrf2 activity: ubiquitin ligases and signaling molecules in redox homeostasis.

Trends Biochem Sci

January 2025

Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK. Electronic address:

Transcription factor NF-E2 p45-related factor 2 (Nrf2) orchestrates defenses against oxidants and thiol-reactive electrophiles. It is controlled at the protein stability level by several E3 ubiquitin ligases (CRL3, CRL4, SCF, and Hrd1). CRL3 is of the greatest importance because it constitutively targets Nrf2 for proteasomal degradation under homeostatic conditions but is prevented from doing so by oxidative stressors.

View Article and Find Full Text PDF

Energizing Robust Sulfur/Lithium Electrochemistry via Nanoscale-Asymmetric-Size Synergism.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China.

Sluggish redox kinetics and dendrite growth perplex the fulfillment of efficient electrochemistry in lithium-sulfur (Li-S) batteries. The complicated sulfur phase transformation and sulfur/lithium diversity kinetics necessitate an all-inclusive approach in catalyst design. Herein, a compatible mediator with nanoscale-asymmetric-size configuration by integrating Co single atoms and defective CoTe (Co-CoTe@NHCF) is elaborately developed for regulating sulfur/lithium electrochemistry synchronously.

View Article and Find Full Text PDF

Nearly one billion individuals worldwide suffer from obstructive sleep apnea (OSA) and are potentially impacted by related neurodegeneration. TFEB is considered a master regulator of autophagy and lysosomal biogenesis, but little is known about its role in neuronal oxidative stress and resultant injury induced by OSA. This study aimed to investigate these issues.

View Article and Find Full Text PDF

Multiple omics analysis reveals the regulation of SIRT4 on lipid deposition and metabolism during the differentiation of bovine preadipocytes.

Genomics

January 2025

Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China. Electronic address:

The differentiation and lipid metabolism of preadipocytes are crucial processes in IMF deposition. Studies have demonstrated that SIRT4 plays essential roles in energy metabolism and redox homeostasis, with its expression being coordinately regulated by multiple transcription factors associated with energy and lipid metabolism. In this study, the findings of multiple omics analysis reveal that SIRT4 significantly up-regulates the expression of genes involved in adipogenesis and enhances the differentiation and lipid deposition of bovine preadipocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!