In contrast to CuZn superoxide dismutase (SOD), only a very limited number of mutations have been described in MnSOD. One interesting example is a polymorphism (Ala-9Val) in the mitochondrial targeting sequence of this radical-scavenging enzyme. We have studied the Ala-9Val polymorphism in various ethnic groups by means of the oligonucleotide ligation assay. There were significant variations in this unique polymorphism between three different language groups: Baltic (Lithuanians), Finnic (Finns and Saamis) and Germanic (Swedes). The Ala frequency in an Asiatic population (Chinese) was significantly lower than in most European populations. This polymorphism may affect the mitochondrial targeting rate of MnSOD which may result in mitochondrial damage with implication in various late-onset neurological diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000022873DOI Listing

Publication Analysis

Top Keywords

mitochondrial targeting
12
targeting sequence
8
polymorphism
5
ethnic variation
4
mitochondrial
4
variation mitochondrial
4
sequence polymorphism
4
polymorphism mnsod
4
mnsod contrast
4
contrast cuzn
4

Similar Publications

Pathogenic protists are responsible for many diseases that significantly impact human and animal health across the globe. Almost all protists possess mitochondria or mitochondrion-related organelles, and many contain plastids. These endosymbiotic organelles are crucial to survival and provide well-validated and widely utilised drug targets in parasitic protists such as Plasmodium and Toxoplasma.

View Article and Find Full Text PDF

Background: Mitochondria-driven oxidative/redox stress and inflammation play a major role in chronic kidney disease (CKD) pathophysiology. Compounds targeting mitochondrial metabolism may improve mitochondrial function, inflammation, and redox stress; however, there is limited evidence of their efficacy in CKD.

Methods: We conducted a pilot randomized, double-blind, placebo-controlled crossover trial comparing the effects of 1200 mg/day of coenzyme Q10 (CoQ10) or 1000 mg/day of nicotinamide riboside (NR) supplementation to placebo in 25 people with moderate-to-severe CKD (estimated glomerular filtration rate [eGFR] <60mL/min/1.

View Article and Find Full Text PDF

B-Type Trimeric Procyanidins Attenuate Nonalcoholic Hepatic Steatosis Through AMPK/mTOR Signaling Pathway in Oleic Acid-Induced HepG2 Cells and High-Fat Diet- Fed Zebrafish.

Plant Foods Hum Nutr

January 2025

Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China.

NAFLD is one of the most common and rapidly increasing liver diseases. Procyanidin C1 and procyanidin C2, B-type trimeric procyanidins, show beneficial effects on regulating lipid metabolism. However, the mechanism underlying these effects remain elusive.

View Article and Find Full Text PDF

Unlabelled: Enteroviruses cause nearly 1 billion global infections annually and are associated with a diverse array of human illnesses. Among these, myocarditis and the resulting chronic inflammation have been recognized as major contributing factors to virus-induced heart failure. Despite our growing understanding, very limited therapeutic strategies have been developed to address the pathological consequences of virus-induced chronic innate immune activation.

View Article and Find Full Text PDF

Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration.

Antioxid Redox Signal

January 2025

Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland, USA.

The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!