Effects of mu and kappa opioid receptor antagonists on glucoprivic induction of Fos immunoreactivity in the rat preoptic area and hypothalamus.

Brain Res Bull

Division of Basic Pharmaceutical Sciences, College of Pharmacy, Northeast Louisiana University, Monroe 71209-0470, USA.

Published: June 1999

Interoreceptors in the central nervous system elicit compensatory behavioral and physiological responses to cellular glucopenia. Antagonism of mu and kappa opioid receptors attenuates glucoprivic hyperphagia, findings that implicate these peptidergic receptors in the central processing of metabolic regulatory signals. Several hypothalamic structures of critical importance for the regulation of energy balance exhibit one or both of these receptors. The following studies investigated the role of these opioid receptors in glucoprivic induction of immediate-early gene expression in these brain sites. Male rats were pretreated with beta-funaltrexamine (mu antagonist), Mr-1452 MS (kappa antagonist), or vehicle prior to intraperitoneal injection of the glucose antimetabolite, 2-deoxy-D-glucose (2DG), then sacrificed by transcardial perfusion 2 h later. Nuclear immunolabeling for the transcription factor, Fos, was observed in several preoptic and hypothalamic sites following 2DG administration. Rats pretreated with the mu antagonist exhibited significantly fewer Fos-positive neurons in the medial preoptic area and dorsomedial hypothalamic nucleus in response to 2DG, compared to vehicle-pretreated controls. Blockade of kappa receptors diminished 2DG and induced Fos staining in the paraventricular and supraoptic nuclei. Numbers of Fos-positive cells in the arcuate nucleus and ventrolateral hypothalamic area were not altered by either antagonist. The present data implicate mu and kappa opioid receptors in neural mechanisms underlying glucoprivic induction of the Fos stimulus-transcription pathway by local neurons in discrete hypothalamic sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0361-9230(99)00054-4DOI Listing

Publication Analysis

Top Keywords

kappa opioid
12
glucoprivic induction
12
opioid receptors
12
induction fos
8
preoptic area
8
rats pretreated
8
hypothalamic sites
8
receptors
6
hypothalamic
5
effects kappa
4

Similar Publications

TEMPORARY REMOVAL: Targeting the kappa opioid receptor for analgesia and antitumour effects.

Br J Anaesth

January 2025

Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA. Electronic address:

The publisher regrets that this article has been temporarily removed. A replacement will appear as soon as possible in which the reason for the removal of the article will be specified, or the article will be reinstated. The full Elsevier Policy on Article Withdrawal can be found at https://www.

View Article and Find Full Text PDF

Molecular mechanisms of inverse agonism via κ-opioid receptor-G protein complexes.

Nat Chem Biol

January 2025

The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.

Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor-G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist.

View Article and Find Full Text PDF

Public Health Discussions on Social Media: Evaluating Automated Sentiment Analysis Methods.

JMIR Form Res

January 2025

Department of Health Administration, The College of Health Professions, Central Michigan University, Mt Pleasant, MI, United States.

Article Synopsis
  • Sentiment analysis is a key method for analyzing text, especially in social media research, where the choice between manual and automated methods is crucial.
  • The study compared several sentiment analysis tools, including VADER, TEXT2DATA, LIWC-22, and ChatGPT 4.0, against manually coded sentiment scores from YouTube comments on the opioid crisis, assessing factors like ease of use and cost.
  • Findings revealed that LIWC-22 excelled in identifying sentiment patterns, while VADER was best at classifying negative comments, but overall, automated tools showed only fair agreement with manual coding, with ChatGPT performing poorly.
View Article and Find Full Text PDF

Emerging Psychotropic Drug for the Treatment of Trigeminal Pain: Salvinorin A.

Pharmaceuticals (Basel)

November 2024

Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de Mexico 04510, Mexico.

Trigeminal neuralgia (TN) is chronic pain caused by damage to the somatosensorial system on the trigeminal nerve or its branches, which involves peripheral and central dysfunction pain pathways. Trigeminal pain triggers disruptive pain in regions of the face, including within and around the mouth. Besides clinical experiences, translating the language of suffering into scientific terminology presents substantial challenges.

View Article and Find Full Text PDF

Nuclear Factor-κB Signaling Regulates the Nociceptin Receptor but Not Nociceptin Itself.

Cells

December 2024

Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland.

The nociceptin receptor (NOP) and nociceptin are involved in the pathways of pain and inflammation. The potent role of nuclear factor-κB (NFκB) in the modulation of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β on the nociceptin system in human THP-1 cells under inflammatory conditions were investigated. Cells were stimulated without/with phorbol-myristate-acetate (PMA), TNF-α, IL-1β, or PMA combined with individual cytokines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!