Autonomous parvoviruses are small, single strand DNA viruses which preferentially replicate in transformed and tumor cells, causing cell death by expression of the cytotoxic nonstructural protein, NS1. Several parvoviruses of the rodent group, including LuIII, efficiently infect human transformed cell lines. The potential for systemic use of these viruses in targeting metastases might be enhanced if NS1 expression and viral replication could be controlled by an innocuous drug such as tetracycline. We therefore substituted prokaryotic tetracycline operator sequences for part of P4 of LuIII, the promoter responsible for transcription of the mRNAs for nonstructural proteins. The resulting construct unexpectedly showed constitutive expression in transiently transfected cells, as indicated by efficient excision and amplification of viral replicative form (RF) DNA. This was apparently due to self-stimulatory transcriptional transactivation by NS1. This problem was overcome by cotransfection with a plasmid expressing a chimera of the repressor of the tetracycline operon with a KRAB transrepression domain. These conditions allowed efficient control of transcription and RF amplification by the tetracycline derivative, doxycycline. These observations form a basis for developing a therapeutic agent based on a drug-controlled parvovirus.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.gt.3300832DOI Listing

Publication Analysis

Top Keywords

control parvovirus
4
parvovirus dna
4
dna replication
4
replication tetracycline-regulated
4
tetracycline-regulated repressor
4
repressor autonomous
4
autonomous parvoviruses
4
parvoviruses small
4
small single
4
single strand
4

Similar Publications

Identification of Host-Protein Interaction Network of Canine Parvovirus Capsid Protein VP2 in F81 Cells.

Microorganisms

January 2025

Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, In-Stitute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.

Canine Parvovirus (CPV) is a highly contagious virus that causes severe hemorrhagic enteritis and myocarditis, posing a major threat to the life and health of dogs. The molecular mechanism by which VP2, the major capsid protein of CPV, infects host cells and utilizes host cell proteins for self-replication remains poorly understood. In this study, 140 host proteins specifically binding to CPV VP2 protein were identified by immunoprecipitation combined with liquid chromatography-mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Overview of Recent Advances in Canine Parvovirus Research: Current Status and Future Perspectives.

Microorganisms

December 2024

Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.

Canine parvovirus (CPV-2) was first identified in the late 1970s and has since become one of the most significant infectious agents affecting dogs. CPV-2 causes severe diseases such as hemorrhagic gastroenteritis and myocarditis, posing a major threat to canine health, particularly with a high mortality rate in puppies. It is globally recognized as a highly contagious and lethal pathogen.

View Article and Find Full Text PDF

Detection of Tilapia parvovirus in farm-reared tilapia in India and its isolation using fish cell lines.

In Vitro Cell Dev Biol Anim

January 2025

Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, (Affiliated to Thiruvalluvar University), Melvisharam, Tamil Nadu, India.

Tilapia parvovirus (TiPV) is an emerging viral pathogen and responsible for severe economic loss in tilapia culture production. Lethargic, cutaneous haemorrhages; ocular lesions; discolouration of gill and cloudy eye and exophthalmia are common symptoms of TiPV. The TiPV-suspected tilapia fish were collected from grow-out ponds situated in different parts of Tamil Nadu, India, and screened for TiPV by PCR.

View Article and Find Full Text PDF

Background: Aleutian mink disease, mink viral enteritis and canine distemper are known as the three most serious diseases that cause great economic loss in the mink industry. In clinical practice, aleutian mink disease virus (AMDV), mink enteritis virus (MEV) and canine distemper virus (CDV) are common mixed infections, and they have similar clinical clinical signs, such as diarrhoea. Therefore, a rapid and accurate differential diagnosis method for use on mink ranches is essential for the control of these three pathogens.

View Article and Find Full Text PDF

Parvovirus B19 (B19V) presents a significant concern in the context of blood transfusion safety, given its potential for transmission through contaminated blood products, and the increased viral circulation recently reported across Europe. This study examines the recent epidemiological trends of B19V in Italy, where a notable increase in B19V-positive plasma units was observed during early 2024. While routine NAT testing for B19V in individual blood donations is not currently justified, the existing screening protocols for plasma intended for industrial fractionation are crucial to ensure the safety of plasma-derived medicinal products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!