The biosynthesis of enkephalin opioid neuropeptides as well as numerous peptide hormones and neurotransmitters requires proteolytic processing of the respective prohormone precursors. We previously identified a novel cysteine protease known as prohormone thiol protease (PTP) as the major proenkephalin-processing enzyme in chromaffin granules (secretory vesicles) of bovine adrenal medulla. In this study, colocalization of PTP with (Met)enkephalin in regulated secretory vesicles was assessed by immunochemical approaches. Western blots demonstrated the presence of PTP in chromaffin granules, with equivalent levels of PTP protein in the soluble and membrane components of the vesicle. The presence of PTP in pituitary was also demonstrated by immunoblots. Immunoelectron microscopy demonstrated immunogold-labeled PTP and (Met)enkephalin within isolated chromaffin granules. In primary cultures of chromaffin cells, the discrete pattern of PTP and (Met)enkephalin immunofluorescence staining in neuritic extensions and cytoplasmic (perinuclear) regions of chromaffin cells is consistent with localization to secretory vesicles. Moreover, cosecretion of PTP and (Met)enkephalin from chromaffin cells occurred upon KCl depolarization in a calcium-dependent manner, indicating the localization of PTP and (Met)enkephalin within regulated secretory vesicles. Calcium-dependent secretion is a well known property of regulated secretory vesicle exocytosis. Overall, these results are consistent with the localization of PTP to functional, regulated secretory vesicles that contain (Met)enkephalin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/endo.140.8.6926 | DOI Listing |
Sci Rep
January 2025
Department of andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
Diabetes is a detriment to male reproductive health, notably through its capacity to diminish secretion from accessory glands such as the seminal vesicles and prostate, which are crucial for reproductive function. Curcumin, a naturally derived polyphenol renowned for its anti-inflammatory and antioxidative attributes, has demonstrated potential in mitigating tissue damage across various organs in diabetic patients. Despite its established benefits, the specific impact of curcumin on seminal vesicle damage in the context of diabetes remains underexplored.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan. Electronic address:
The condition in which the insulin secretory ability of pancreatic β-cells decreases in diabetes is extremely important, but there are currently no biomarkers that reflect pancreatic β-cell failure. Therefore, we conducted a search for biomarkers, using pancreatic β-cell-specific 3-Phosphoinositide-dependent protein kinase 1 (PDK1) knockout mice, which develop severe hyperglycemia due to a decrease in pancreatic β-cell mass without insulin resistance. The analysis was performed in young mice when metabolic abnormalities were not yet apparent.
View Article and Find Full Text PDFLife Metab
April 2024
Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
In addition to their pivotal roles in energy storage and expenditure, adipose tissues play a crucial part in the secretion of bioactive molecules, including peptides, lipids, metabolites, and extracellular vesicles, in response to physiological stimulation and metabolic stress. These secretory factors, through autocrine and paracrine mechanisms, regulate various processes within adipose tissues. These processes include adipogenesis, glucose and lipid metabolism, inflammation, and adaptive thermogenesis, all of which are essential for the maintenance of the balance and functionality of the adipose tissue micro-environment.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea. Electronic address:
Human embryonic stem cells (hESCs) and their extracellular vesicles (EVs) hold significant potential for tissue repair and regeneration. Neural stem cells (NSCs) in the adult brain often acquire senescent phenotypes after ischemic injuries, releasing neurodegenerative senescence-associated secretory phenotype factors. In this study, we investigated the senotherapeutic effects of hESC-EVs on NSCs and confirmed their neuroprotective effects in neurons via rejuvenation of NSC secretions.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!