N-acetylglucosamine 1-phosphate uridyltransferase (GlmU) is a cytoplasmic bifunctional enzyme involved in the biosynthesis of the nucleotide-activated UDP-GlcNAc, which is an essential precursor for the biosynthetic pathways of peptidoglycan and other components in bacteria. The crystal structure of a truncated form of GlmU has been solved at 2.25 A resolution using the multiwavelength anomalous dispersion technique and its function tested with mutagenesis studies. The molecule is composed of two distinct domains connected by a long alpha-helical arm: (i) an N-terminal domain which resembles the dinucleotide-binding Rossmann fold; and (ii) a C-terminal domain which adopts a left-handed parallel beta-helix structure (LbetaH) as found in homologous bacterial acetyltransferases. Three GlmU molecules assemble into a trimeric arrangement with tightly packed parallel LbetaH domains, the long alpha-helical linkers being seated on top of the arrangement and the N-terminal domains projected away from the 3-fold axis. In addition, the 2.3 A resolution structure of the GlmU-UDP-GlcNAc complex reveals the structural bases required for the uridyltransferase activity. These structures exemplify a three-dimensional template for the development of new antibacterial agents and for studying other members of the large family of XDP-sugar bacterial pyrophosphorylases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1171487PMC
http://dx.doi.org/10.1093/emboj/18.15.4096DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
n-acetylglucosamine 1-phosphate
8
1-phosphate uridyltransferase
8
long alpha-helical
8
structure bifunctional
4
bifunctional n-acetylglucosamine
4
uridyltransferase escherichia
4
escherichia coli
4
coli paradigm
4
paradigm pyrophosphorylase
4

Similar Publications

Schizophrenia and retention in HIV care among adults insured through Medicaid in the United States: a population-based retrospective cohort study.

J Acquir Immune Defic Syndr

January 2025

Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California-San Francisco, School of Medicine, San Francisco, California 675 18th Street, San Francisco, CA 94107.

Background: People with schizophrenia spectrum disorders are at elevated risk of HIV, and people with both HIV and schizophrenia are at elevated risk of death compared to individuals with either diagnosis alone. Limited research has assessed the HIV care cascade, and in particular retention in care, among people with HIV (PWH) and schizophrenia in the U.S.

View Article and Find Full Text PDF

ANKRD11 binding to cohesin suggests a connection between KBG syndrome and Cornelia de Lange syndrome.

Proc Natl Acad Sci U S A

January 2025

Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.

Ankyrin Repeat Domain-containing Protein 11 () is a causative gene for KBG syndrome, a significant risk factor for Cornelia de Lange syndrome (CdLS), and a highly confident autism spectrum disorder gene. Mutations of lead to developmental abnormalities in multiple organs/tissues including the brain, craniofacial and skeletal bones, and tooth structures with unknown mechanism(s). Here, we find that ANKRD11, via a short peptide fragment in its N-terminal region, binds to the cohesin complex with a high affinity, implicating why mutation can cause CdLS.

View Article and Find Full Text PDF

Identifying facile strategies for hierarchically structuring crystalline porous materials is critical for realizing diffusion length scales suitable for broad applications. Here, we elucidate synthesis-structure-function relations governing how room temperature catalytic conditions can be exploited to tune covalent organic framework (COF) growth and thereby access unique hierarchical morphologies without the need to introduce secondary templates or structure directing molecules. Specifically, we demonstrate how scandium triflate, an efficient catalyst involved in the synthesis of imine-based COFs, can be exploited as an effective growth modifier capable of selectively titrating terminal amines on 2D COF layers to facilitate anisotropic crystal growth.

View Article and Find Full Text PDF

Crystal Growth and Structural Analysis of Layered Lithium Titanium Sulfide.

Inorg Chem

January 2025

Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.

Layered sulfide crystals are suitable hosts for lithium and sodium ions in batteries. In this study, new layered lithium titanium sulfide (LTS) crystals were grown in a sealed silica tube using a LiS self-flux at 800-950 °C. X-ray diffraction (XRD) analysis results indicated the formation of a new sulfide phase with higher symmetry in the Li-Ti-S system.

View Article and Find Full Text PDF

SnHPO: A Layered Tin(II) Phosphate with Enhanced Birefringence.

Inorg Chem

January 2025

College of Physics, Qingdao University, National Demonstration Center for Experiment Applied Physics Education (Qingdao University), Qingdao Broadband Terahertz Spectroscopy Technology Engineering Research Center (Qingdao University), Qingdao 266071, China.

As promising optoelectronic functional materials in the short-wavelength spectral region, such as ultraviolet (UV) and deep UV, phosphates have recently received increased attention. However, phosphate materials commonly suffer from limited birefringence owing to the highly symmetrical PO tetrahedra. We herein report a layered tin(II) phosphate with improved birefringence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!