Thermodynamics of the arginine kinase reaction.

J Biol Chem

Department of Physiology and Pharmacology, James Cook University, Townsville, Queensland, Australia 4811.

Published: August 1999

The effect of temperature, pH, free [Mg(2+)], and ionic strength on the apparent equilibrium constant of arginine kinase (EC 2.7.3.3) was determined. At equilibrium, the apparent K' was defined as [see text] where each reactant represents the sum of all the ionic and metal complex species. The K' at pH 7.0, 1.0 mM free [Mg(2+)], and 0. 25 M ionic strength was 29.91 +/- 0.59, 33.44 +/- 0.46, 35.44 +/- 0. 71, 39.64 +/- 0.74, and 45.19 +/- 0.65 (n = 8) at 40, 33, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy (DeltaH degrees') is -8.19 kJ mol(-1), and the corresponding standard apparent entropy of the reaction (DeltaS degrees') is + 2. 2 J K(-1)mol(-1) in the direction of ATP formation at pH 7.0, free [Mg(2+)] =1.0 mM, ionic strength (I) =0.25 M at 25 degrees C. We further show that the magnitude of transformed Gibbs energy (DeltaG degrees ') of -8.89 kJ mol(-1) is mostly comprised of the enthalpy of the reaction, with 7.4% coming from the entropy TDeltaS degrees' term (+0.66 kJ mol(-1)). Our results are discussed in relation to the thermodynamic properties of its evolutionary successor, creatine kinase.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.32.22459DOI Listing

Publication Analysis

Top Keywords

free [mg2+]
12
ionic strength
12
arginine kinase
8
[mg2+] ionic
8
standard apparent
8
+/-
5
thermodynamics arginine
4
kinase reaction
4
reaction temperature
4
temperature free
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!