We have investigated the effects of plasma HIV RNA, CD4+ T lymphocytes and chemokine receptors CCR5 and CCR2b on HIV disease progression in hemophiliacs. We prospectively observed during follow-up 207 HIV-infected hemophiliacs in the Hemophilia Growth and Development Study. Plasma HIV RNA was measured on cryopreserved plasma from enrollment using the Chiron Corporation bDNA (version 2.0) assay. Genoytpe variants CCR2b-641 and CCR5-delta32 were detected using standard molecular techniques. Those with the mutant allele for CCR2b, and to a lesser extent CCR5, had lower plasma HIV RNA, and higher CD4+ T lymphocytes than did those without these genetic variants. After controlling for the effects of plasma HIV RNA and CD4+ T lymphocytes, those with the CCR2b mutant allele compared with those wild-type, had a trend toward a lower risk of progression to AIDS, adjusted relative hazard of 1.94 (95% confidence interval [CI], 0.9-4.18; p = .092), and AIDS-related death, relative hazard 1.97 (95% CI, 0.98-4.00; p = .059). We conclude that plasma HIV RNA, CD4+ T lymphocytes, and CCR genotypes are correlated, and the protective affect of CCR2b against HIV disease progression is not completely explained by plasma HIV RNA or CD4+ T-lymphocyte number.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00126334-199908010-00010DOI Listing

Publication Analysis

Top Keywords

plasma hiv
28
hiv rna
28
rna cd4+
20
cd4+ lymphocytes
20
effects plasma
12
ccr2b hiv
12
hiv disease
12
disease progression
12
hiv
10
lymphocytes chemokine
8

Similar Publications

Background: Severe COVID-19 presents a variety of clinical manifestations associated with inflammatory profiles. People living with HIV (PLWH) could face a higher risk of hospitalization and mortality from COVID-19, depending on their immunosuppression levels. This study describes inflammatory markers in COVID-19 clinical outcomes with and without HIV infection.

View Article and Find Full Text PDF

Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even in the presence of cART. These active reservoir cells are implicated in the resultant viremia upon cART cessation and likely contribute to chronic immune activation in people living with HIV (PLWH) on cART.

View Article and Find Full Text PDF

Metabolomic Profiling Reveals Potential Biomarkers and Prominent Features in HIV/AIDS Patients Co-Infected with SARS-CoV-2.

Microorganisms

January 2025

Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.

The underlying mechanisms and diagnostic biomarkers for the progress of COVID-19 in HIV patients have not been fully elucidated. In this study, the aim is to analyze the metabolomic profiles of HIV/AIDS patients co-infected with SARS-CoV-2 and to identify biomarkers indicative of co-infection. In this study, we conducted a retrospective cohort analysis of peripheral blood samples collected from 30 HIV/AIDS patients co-infected with SARS-CoV-2 (pc group) and 30 patients without SARS-CoV-2 (nc group).

View Article and Find Full Text PDF

How Antiretroviral Drug Concentrations Could Be Affected by Oxidative Stress, Physical Capacities and Genetics: A Focus on Dolutegravir Treated Male PLWH.

Antioxidants (Basel)

January 2025

Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, 10149 Turin, Italy.

High levels of reactive oxygen species (ROS) are present in people living with HIV (PLWH), produced by intense physical activity; in response, our body produces antioxidant molecules. ROS influence the expression of gene-encoding enzymes and transporters involved in drug biotransformation. In addition, pharmacogenetics can influence transporter activity, and thus drug exposure.

View Article and Find Full Text PDF

Background: In patients with chronic kidney disease (CKD), trimethylamine n-oxide (TMAO) accumulation exacerbates inflammation and contributes to oxidative stress. These complications are putatively linked to the development of cardiovascular diseases. Despite the known associations, the variation in TMAO plasma levels across different CKD stages and dialysis modalities remains underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!