Four recombinant human M1 (hM1) muscarinic acetylcholine receptors (mAChRs) combining several modifications were designed and overexpressed in HEK293 cells. Three different fluorescent chimera were obtained through fusion of the receptor N terminus with enhanced green fluorescent protein (EGFP), potential glycosylation sites and a large part of the third intracellular (i3) loop were deleted, a hexahistidine tag sequence was introduced at the receptor C terminus, and, finally, a FLAG epitope was either fused at the receptor N terminus or inserted into its shortened i3 loop. High expression levels and ligand binding properties similar to those of the wild-type hM1 receptor together with confocal microscopy imaging demonstrated that the recombinant proteins were correctly folded and targeted to the plasma membrane, provided that a signal peptide was added to the N-terminal domain of the fusion proteins. Their functional properties were examined through McN-A-343-evoked Ca2+ release. Despite the numerous modifications introduced within the hM1 sequence, all receptors retained nearly normal abilities (EC50 values) to mediate the Ca2+ response, although reduced amplitudes (Emax values) were obtained for the i3-shortened constructs. Owing to the bright intrinsic fluorescence of the EGFP-fused receptors, their detection, quantitation, and visualization as well as the selection of cells with highest expression were straightforward. Moreover, the presence of the different epitopes was confirmed by immunocytochemistry. Altogether, this work demonstrates that these EGFP- and epitope-fused hM1 receptors are valuable tools for further functional, biochemical, and structural studies of muscarinic receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1471-4159.1999.0730791.xDOI Listing

Publication Analysis

Top Keywords

receptor terminus
12
enhanced green
8
green fluorescent
8
muscarinic receptors
8
receptors
6
functional characterization
4
characterization potential
4
potential applications
4
applications enhanced
4
fluorescent protein-
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!