AI Article Synopsis

Article Abstract

The influence and mechanisms of action of N-ethyl- and N-benzyl-1,2-diphenylethanolamines (compounds E and B, respectively) on the arterial blood pressure and the heart rate of the rat together with their effects on CaCl2-induced arrhythmias in the rat were investigated. Both E and B in doses of (1.5-12 micromol/kg IV) decreased the arterial blood pressure and the heart rate in a dose-dependent manner. Studies with various receptor blockers, enzyme inhibitors and CaCl2 revealed that E-induced cardiovascular depressant effects were mainly due to CaCl2 channel blocking action and activation of cyclic guanylyl cyclase or release of NO whereas the cardiovascular effects of B seemed to involve both blockade of Ca2+ channels and activation of parasympathetic ganglia. Both compounds (12-14.5 micromol/kg) completely protected the rat against CaCl2 (60 mg kg(-1))-induced tachyarrhythmias. The B compound seemed to be several times more potent than the E compound in its cardiovascular depressant actions. The results suggest the potential usefulness of both compounds in the treatment of hypertension and supraventricular arrhythmias.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0306-3623(98)00269-9DOI Listing

Publication Analysis

Top Keywords

cardiovascular depressant
12
depressant effects
8
n-ethyl- n-benzyl-12-diphenylethanolamines
8
mechanisms action
8
arterial blood
8
blood pressure
8
pressure heart
8
heart rate
8
studies cardiovascular
4
effects
4

Similar Publications

Cardiovascular and respiratory alterations during anesthesia are of major concern in canines. Thus, it is essential to understand the potential depressant effects of anesthetic drugs on cardio-vascular system; so that, anesthetic procedures are conducted in the best possible way. The objective of the study was to assess and compare the echocardiographic indices during dex-medetomidine and midazolam anesthesia in dogs undergoing elective ovariohysterectomy.

View Article and Find Full Text PDF

Extraction, purification, structural characterization, and bioactivities of Radix Aconiti Lateralis Preparata (Fuzi) polysaccharides: A review.

Int J Biol Macromol

December 2024

Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. Electronic address:

Radix Aconiti Lateralis Preparata (Fuzi) polysaccharide (FZP) is a key bioactive macromolecule derived from the root of Aconitum carmichaeli Debx. FZP has a variety of biological activities, including immunomodulatory, anti-tumor, anti-depressant, organ-protective, hypoglycemic, anti-inflammatory, and other activities. The biological activities of polysaccharides are closely related to their structures, and different extraction and purification methods will yield different polysaccharide structures.

View Article and Find Full Text PDF

Oleanolic acid protects ethanol-induced memory impairments.

Behav Brain Res

March 2025

Department of Korean Internal Medicine, College of Korean Medicine, Sang-Ji University, 3 Sangjidae-gil, Wonju-si, Gangwon-do 26339, Republic of Korea. Electronic address:

Article Synopsis
  • * Ethanol affects GABA receptors, leading to changes in neurotransmission that could result in memory loss and increase the likelihood of psychiatric disorders like dementia.
  • * Oleanolic acid (OA) was found to protect against ethanol-induced memory impairment by blocking alterations in N-methyl-D-aspartate receptor function, suggesting its potential as a treatment for overcoming Ethanol-related cognitive issues.
View Article and Find Full Text PDF

Context: Obesity is a chronic inflammatory disorder, which promotes the progression of metabolic disorders. MicroRNA (miR)-6838-5p is dysregulated and participates in the progression of several disorder models.

Objective: To explore the role and mechanism of miR-6838-5p in insulin resistance.

View Article and Find Full Text PDF

Introduction: Patients undergoing cardiovascular surgery may experience hemodynamic instability during the induction of general anesthesia, and anesthetic agents with minimal hemodynamic effects should be administered. Midazolam, a classic benzodiazepine anesthetic, is known to have relatively weak circulatory depression during anesthesia induction compared to other sedatives. On the other hand, remimazolam, a newly approved short-acting benzodiazepine anesthetic, is expected to have fewer circulatory depressant effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!