We have designed liposomal diepitope constructs that allow the physical combination, within the same vesicle, of B and Th epitopes as structurally separate entities. The immune response against such constructs was explored using TPEDPTDPTDPQDPSS (TPE), a B cell epitope originating from a Streptococcus mutans surface adhesin and QYIKANSKFIGITEL (QYI), a "universal" Th epitope from tetanus toxin. The two peptides were linked to the outer surface of small (diameter approximately 100 nm) unilamellar liposomes by covalent conjugation to two different anchors. To that end we have developed a strategy that allows the controlled chemical coupling of TPE and QYI, functionalized at their N terminus with a thiol, to preformed liposomes containing thiol-reactive derivatives of phosphatidylethanolamine and the lipopeptide S-[2,3-bis (palmitoyloxy)-(2-RS)-propyl]-N-palmitoyl-(R)-cysteinyl-alanyl-gly cine (Pam3CAG), respectively. This synthetic construct (administered i.p. to BALB/c mice) induced highly intense (titers > 20,000), anamnestic and long-lasting (over 2 years) immune responses, indicating that this strategy is successful. Two parameters were of prime importance to elicit this response with our liposomal diepitope constructs: (1) the simultaneous expression of B and Th epitopes on the same vesicle, and (2) the lipopeptide Pam3CAG anchor of the Th epitope QYI could not be replaced by a phosphatidylethanolamine anchor (a lesser immune response was observed). Analysis of the antibody response revealed a complex pattern; thus, besides the humoral response (production of IgG1, IgG2a, IgG2b) a superposition of a T-independent (TI-2 type) response was also found (IgM and IgG3). These results indicate that liposomal diepitope constructs could be attractive in the development of synthetic peptide-based vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1521-4141(199907)29:07<2297::AID-IMMU2297>3.0.CO;2-5DOI Listing

Publication Analysis

Top Keywords

liposomal diepitope
12
diepitope constructs
12
immune response
8
response
6
constructs
5
design highly
4
highly immunogenic
4
liposomal
4
immunogenic liposomal
4
liposomal constructs
4

Similar Publications

We have designed chemically defined diepitope constructs consisting of liposomes displaying at their surface synthetic oligosaccharides mimicking the O-antigen of the Shigella flexneri 2a lipopolysaccharide (B-cell epitope) and influenza hemagglutinin peptide HA 307-319 (Th epitope). Using well controlled and high-yielding covalent bioconjugation reactions, the two structurally independent epitopes were coupled to the lipopeptide Pam(3)CAG, i.e.

View Article and Find Full Text PDF

Induction of effective and antigen-specific antitumour immunity by a liposomal ErbB2/HER2 peptide-based vaccination construct.

Br J Cancer

April 2005

Laboratoire de Chimie Bioorganique, UMR 7514 CNRS/ULP, Faculté de Pharmacie, 74 route du Rhin, 67400 Illkirch, France.

Efficient delivery of tumour-associated antigens to appropriate cellular compartments of antigen-presenting cells is of prime importance for the induction of potent, cell-mediated antitumour immune responses. We have designed novel multivalent liposomal constructs that co-deliver the p63-71 cytotoxic T Lymphocyte epitope derived from human ErbB2 (HER2), and HA307-319, a T-helper (Th) epitope derived from influenza haemagglutinin. Both peptides were conjugated to the surface of liposomes via a Pam3CSS anchor, a synthetic lipopeptide with potent adjuvant activity.

View Article and Find Full Text PDF

The comparative reactivity of maleimide and bromoacetyl groups with thiols (2-mercaptoethanol, free cysteine, and cysteine residues present at the N-terminus of peptides) was investigated in aqueous media. These studies were performed (i) with water-soluble functionalized model molecules, i.e.

View Article and Find Full Text PDF

We have designed liposomal diepitope constructs that allow the physical combination, within the same vesicle, of B and Th epitopes as structurally separate entities. The immune response against such constructs was explored using TPEDPTDPTDPQDPSS (TPE), a B cell epitope originating from a Streptococcus mutans surface adhesin and QYIKANSKFIGITEL (QYI), a "universal" Th epitope from tetanus toxin. The two peptides were linked to the outer surface of small (diameter approximately 100 nm) unilamellar liposomes by covalent conjugation to two different anchors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!