Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls.

Clin Neurophysiol

Department of Neurology and Clinical Neurophysiology, Leyenburg Hospital, The Hague, The Netherlands.

Published: July 1999

Objective: Non-linear EEG analysis can provide information about the functioning of neural networks that cannot be obtained with linear analysis. The correlation dimension (D2) is considered to be a reflection of the complexity of the cortical dynamics underlying the EEG signal. The presence of non-linear dynamics can be determined by comparing the D2 calculated from original EEG data with the D2 from phase-randomized surrogate data.

Methods: In a prospective study, we used this method in order to investigate non-linear structure in the EEG of Alzheimer patients and controls. Twenty-four patients (mean age 75.6 years) with 'probable Alzheimer's disease' (NINCDS-ADRDA criteria) and 22 controls (mean age 70.3 years) were examined. D2 was calculated from original and surrogate data at 16 electrodes and in three conditions: with eyes open, eyes closed and during mental arithmetic.

Results: D2 was significantly lower in the Alzheimer patients compared to controls (P = 0.023). The difference between original and surrogate data was significant in both groups, implicating that non-linear dynamics play a role in the D2 value. Moreover, this difference between original and surrogate data was smaller in the patient group. D2 increased with activation, but not significantly more in controls than in patients.

Conclusions: In conclusion, we found decreased dimensional complexity in the EEG of Alzheimer patients. This decrease seems to be attributable at least partially to different non-linear EEG dynamics. Because of this, non-linear EEG analysis could be a useful tool to increase our insight into brain dysfunction in Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1388-2457(99)00013-9DOI Listing

Publication Analysis

Top Keywords

alzheimer patients
16
eeg alzheimer
12
non-linear eeg
12
original surrogate
12
surrogate data
12
non-linear structure
8
eeg
8
structure eeg
8
patients compared
8
eeg analysis
8

Similar Publications

Cerebral perfusion correlates with amyloid deposition in patients with mild cognitive impairment due to Alzheimer's disease.

J Prev Alzheimers Dis

February 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China, 154 Anshan Road Tianjin 300052, PR China; Department of Neurology, Tianjin Medical University General Hospital Airport Site, Tianjin 300052, PR China. Electronic address:

Background: Changes in cerebral blood flow (CBF) may contribute to the initial stages of the pathophysiological process in patients with Alzheimer's disease (AD). Hypoperfusion has been observed in several brain regions in patients with mild cognitive impairment (MCI). However, the clinical significance of CBF changes in the early stages of AD is currently unclear.

View Article and Find Full Text PDF

Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.

Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.

View Article and Find Full Text PDF

Determinants of dementia diagnosis in U.S. primary care in the past decade: A scoping review.

J Prev Alzheimers Dis

February 2025

Department of Health Behavior and Health Equity, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109-2029, United States.

Background: Alzheimer's disease and related dementias (ADRD) are chronically underdiagnosed in the U.S., particularly among minoritized racial and ethnic groups.

View Article and Find Full Text PDF

High definition transcranial direct current stimulation as an intervention for cognitive deficits in Alzheimer's dementia: A randomized controlled trial.

J Prev Alzheimers Dis

February 2025

Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.

Background: Recent disease-modifying treatments for Alzheimer's disease show promise to slow cognitive decline, but show no efficacy towards reducing symptoms already manifested.

Objectives: To investigate the efficacy of a novel noninvasive brain stimulation technique in modulating cognitive functioning in Alzheimer's dementia (AD).

Design: Pilot, randomized, double-blind, parallel, sham-controlled study SETTING: Clinical research site at UT Southwestern Medical Center PARTICIPANTS: Twenty-five participants with clinical diagnoses of AD were enrolled from cognition specialty clinics.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!