Dopamine D1-receptor immunolocalization in goldfish retina.

J Comp Neurol

Department of Neurobiology and Behavior, SUNY, Stony Brook, New York 11794-5230, USA.

Published: September 1999

Dopamine, a neuromodulator in the vertebrate retina, is involved in numerous functions related to light adaptation. However, unlike in mammals, localization of retinal D1-dopamine receptors in nonmammalian vertebrates has been hampered due to a lack of antisera. To address this problem, an antiserum against the 18 C-terminal amino acids of the goldfish D1 receptor (gfD1r) was generated in chicken eggs and tested in retinae of goldfish and rat, and rat caudate putamen, by using immunoblots and light microscopic immunocytochemistry. No labeling was observed in any tissue or immunoblots with preabsorbed gfD1r antiserum. Immunoblot analysis of goldfish retina revealed a single band at about 101 kDa. The patterns of gfD1r immunoreactivity (gfD1r-IR), found in rat caudate putamen and rat retina were virtually identical to that previously reported with other D1-receptor ligands and antisera. In goldfish retina, gfD1r-IR was most intense over cell bodies in the ganglion cell layer, amacrine cells in the proximal inner nuclear layer (INL), and bipolar cells in the distal INL. Weaker gfD1r-IR was observed over horizontal cell bodies and both plexiform layers. Müller cells and axons of cone photoreceptors were labeled as well. Double labeling showed that all protein kinase C-immunoreactive bipolar cells (ON type) were gfD1r-IR on the soma, axon terminal, and dendrites. All glutamate decarboxylase-immunoreactive (i.e., gamma-aminobutyric acid utilizing) amacrine cells and horizontal cells were gfD1r-IR. Retinal D1r distribution is more extensive than dopamine neuron innervation, but is consistent with physiologic estimates of dopamine function, suggestive of both wiring and volume transmission of dopamine in the retina. The gfD1r antiserum displays cross-reactivity to dopamine receptors in a mammal and a nonmammal and should prove useful in future studies of dopaminergic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1096-9861(19990906)411:4<705::aid-cne14>3.0.co;2-yDOI Listing

Publication Analysis

Top Keywords

goldfish retina
12
rat caudate
8
caudate putamen
8
gfd1r antiserum
8
cell bodies
8
amacrine cells
8
bipolar cells
8
dopamine
6
retina
6
cells
6

Similar Publications

Hypoxia increases intracellular calcium in glutamate-activated horizontal cells of goldfish retina via mitochondrial K channels and intracellular stores.

Comp Biochem Physiol A Mol Integr Physiol

February 2025

Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada. Electronic address:

Central neurons of the common goldfish (Carassius auratus) are exceptional in their capacity to survive Ca-induced excitotoxicity and cell death during hypoxia. Horizontal cells (HCs) are inhibitory interneurons of the retina that are tonically depolarized by the neurotransmitter, glutamate, yet preserve intracellular Ca homeostasis. In HCs isolated from goldfish, and in the absence of glutamatergic input, intracellular Ca concentration ([Ca]) is protected from prolonged exposure to hypoxia by mitochondrial ATP-dependent K (mK) channel activity.

View Article and Find Full Text PDF

Widespread direct photoentrainment in zebrafish peripheral tissues is linked to diverse non-visual opsins. To explore whether this broadly distributed photosensitivity is specific to zebrafish or is a general teleost feature, we investigated hepatic photosynchronization in goldfish. First, we focused on the opsin 7 family (OPN7, a key peripheral novel opsin in zebrafish), investigating its presence in the goldfish liver.

View Article and Find Full Text PDF

The processing of visual information for collision avoidance has been investigated at the biophysical level in several model systems. In grasshoppers, the (so-called) [Formula: see text] model captures reasonably well the visual processing performed by an identified neuron called the lobular giant movement detector as it tracks approaching objects. Similar phenomenological models have been used to describe either the firing rate or the membrane potential of neurons responsible for visually guided collision avoidance in other animals.

View Article and Find Full Text PDF

The recent whole-genome duplication (WGD) in goldfish (Carassius auratus) approximately 14 million years ago makes it a valuable model for studying gene evolution during the early stages after WGD. We analyzed the transcriptome of the goldfish retina at the level of single-cell (scRNA-seq) and open chromatin regions (scATAC-seq). We identified a group of genes that have undergone dosage selection, accounting for 5% of the total 11,444 ohnolog pairs.

View Article and Find Full Text PDF

Goldfish and crucian carp are natural models of anoxia tolerance in the retina.

Comp Biochem Physiol A Mol Integr Physiol

August 2022

Department of Biology, University of Ottawa, Canada; Brain and Mind Research Institute, University of Ottawa, Canada. Electronic address:

Vertebrates need oxygen to survive. The central nervous system has an especially high energy demand, so brain and retinal neurons quickly die in anoxia. But fish of the genus Carassius are exceptionally anoxia-tolerant: the crucian carp (C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!