Glutamate receptors of the N-methyl-D-aspartate (NMDA) subtype in the caudate-putamen nucleus (CPN) have been implicated in the adverse motor effects produced by chronic administration of the typical antipsychotic drug haloperidol. To determine the functionally relevant sites, we examined the electron microscopic immunocytochemical localization of the R1 receptor subunit (NMDAR1) in the dorsolateral CPN of rats receiving 4 months of biweekly depot intramuscular injections of either haloperidol or vehicle. In all animals, NMDAR1 immunoreactivity was seen mainly in dendritic spines, but was also present in a few somata and dendrites of spiny neurons, axon terminals, and glia. In comparison with controls, the dissector stereological analysis showed a significant reduction in the numerical density of total NMDAR1-labeled and unlabeled dendritic spines in the dorsolateral CPN after haloperidol administration. When labeled spines were identified separately based exclusively on the presence of immunoreactivity within a single plane of section, there was, however, a significant increase in the numerical density of NMDAR1-containing spines in haloperidol vs. control animals. This increase was not seen using a classic dissector, suggesting that the enhancement was mainly attributed to more frequent detection of spines having higher levels of NMDA immunoreactivity. Our results are the first to identify dendritic spines in the dorsolateral CPN as preferential sites for the regulated expression of NMDA receptors following chronic administration of haloperidol.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1098-2396(19990915)33:4<289::AID-SYN6>3.0.CO;2-IDOI Listing

Publication Analysis

Top Keywords

dendritic spines
16
dorsolateral cpn
12
n-methyl-d-aspartate nmda
8
nmda immunoreactivity
8
caudate-putamen nucleus
8
haloperidol administration
8
chronic administration
8
numerical density
8
spines dorsolateral
8
spines
7

Similar Publications

Qiangji Decoction mitigates neuronal damage, synaptic and mitochondrial dysfunction in SAMP8 mice through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics.

J Ethnopharmacol

January 2025

Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, Hubei, 445000, PR China. Electronic address:

Ethnopharmacological Relevance: Qiangji Decoction (QJD), a Chinese medicine, is widely used in Traditional Chinese Medicine to treat amnesia and Alzheimer's disease (AD), showing significant anti-AD effects. However, the precise mechanisms behind these effects are not well understood and require more research.

Aim Of The Study: This study aims to elucidate the mechanisms by which QJD ameliorates neuronal damage, synaptic dysfunction, and mitochondrial impairment in AD through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics.

View Article and Find Full Text PDF

The effect of Constraint-induced movement therapy (CIMT) or Intermittent theta-burst stimulation (iTBS) alone is limited in improving motor function after a stroke. In this study, we explored the efficacy and possible mechanisms in combination of CIMT and iTBS through behavioral evaluation, RNA sequencing, Golgi staining, transmission electronic microscope (TEM), high-performance liquid chromatography (HPLC), western blotting (WB) and immunofluorescence. Firstly, we observed that combination therapy is safe and effective, and it can significantly reduce the number of immature dendritic spines and increase the number of functional dendritic spines, the amount of glutamate (Glu) and the expression of Glu1 receptor (Glu1R).

View Article and Find Full Text PDF

Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how these theoretically-derived rules relate to biological mechanisms of plasticity in the brain, or how these different rules might be mechanistically implemented in different contexts and brain regions. This study shows that the calcium control hypothesis, which relates synaptic plasticity in the brain to the calcium concentration ([Ca2+]) in dendritic spines, can produce a diverse array of learning rules.

View Article and Find Full Text PDF

Adult neurogenesis has most often been studied in the hippocampus and subventricular zone-olfactory bulb, where newborn neurons contribute to a variety of behaviors. A handful of studies have also investigated adult neurogenesis in other brain regions, but relatively little is known about the properties of neurons added to non-canonical areas. One such region is the striatum.

View Article and Find Full Text PDF

Dendritic alterations precede age-related dysphagia and nucleus ambiguus motor neuron death.

J Physiol

January 2025

Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.

Motor neurons (MNs) within the nucleus ambiguus innervate the skeletal muscles of the larynx, pharynx and oesophagus, which are essential for swallow. Disordered swallow (dysphagia) is a serious problem in elderly humans, increasing the risk of aspiration, a key contributor to mortality. Despite this importance, very little is known about the pathophysiology of ageing dysphagia and the relative importance of frank muscle weakness compared to timing/activation abnormalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!