We measured 6-[(18)F]fluoro-L-DOPA (FDOPA) uptake and metabolism in the brain of 4-month-old female pigs (n = 8) using a high-resolution positron emission tomograph (PET) in 3D mode. The mean net blood-brain clearance of FDOPA (K(i)(D)) to striatum was 0.011 ml g(-1) min(-1). Correcting for the elimination of decarboxylated metabolites from striatum (k(loss) = 0.004 min(-1)) increased the apparent magnitude of the estimate of K(i)(D) by 50%, at the expense of doubling the variance of the mean estimate. The mean decarboxylation rate of FDOPA in striatum relative to the cerebellum input (k(3)(s)) was 0.008 min(-1). For multicompartmental analyses, the FDOPA partition volume (V(e)(D)) was constrained to the individual value observed in cerebellum (mean = 0.53 ml g(-1)), with correction for the presence in brain of the plasma metabolite 3-O-methyl-FDOPA (OMFD). Using the first 60 min of the dynamic PET scans, the rate constant of FDOPA decarboxylation (k(3)(D)) was estimated to be 0.037 min(-1 )in striatum, but was not significantly different than zero in frontal cortex. Fitting of a compartmental model correcting for elimination of decarboxylated metabolites to the complete PET frame-sequence (120 min) increased the variance of the estimate of k(3)(D) in striatum. The magnitude of k(3)(D) in striatum of young pig was less than values estimated previously in neonatal piglet, adult monkey, and human. MRI-based simulations predicted that recovery of radioactivity from pig striatum was highly sensitive to the volume of interest. We conclude that the spatial resolution of our tomograph reduces the apparent magnitude of k(3)(D) in striatum. However, anaesthetised pigs are an appropriate experimental model for PET studies of DOPA decarboxylation in striatum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(SICI)1098-2396(19990915)33:4<247::AID-SYN1>3.0.CO;2-6 | DOI Listing |
Neurobiol Aging
March 2010
Centre for Functionally Integrative Neuroscience, Aarhus University, Aarhus C. 8000, Denmark.
Conventional indices of the utilization of FDOPA in living human brain have not consistently revealed important declines in dopamine function with normal aging. However, most methods of kinetic analysis have assumed irreversible trapping of decarboxylated FDOPA metabolites in brain, an assumption that is violated even in PET recordings of short duration. Therefore, we have developed methods for the calculation of steady-state storage of FDOPA together with its decarboxylated metabolites (V(d), mlg(-1)), based upon improved kinetic analysis of 120-min emission recordings.
View Article and Find Full Text PDFNeuroimage
May 2006
Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany.
In animal studies, acute antipsychotic treatment was shown to enhance striatal DOPA-decarboxylase (DDC) activity. However, this phenomenon has not been demonstrated in humans by positron emission tomography (PET). Therefore, we investigated acute haloperidol effects on DDC activity in humans using [18F]fluorodopa (FDOPA) PET.
View Article and Find Full Text PDFCell Transplant
August 2003
Department of Anatomy and Neurobiology, University of Southern Denmark, 5000 Odense C, Denmark.
The functional restoration of the dopamine innervation of striatum in MPTP-poisoned Göttingen minipigs was assessed for 6 months following grafting of fetal pig mesencephalic neurons. Pigs were assigned to a normal control group and a MPTP-poisoned group, members of which received no further treatment, or which received bilateral grafts to the striatum of tissue blocks harvested from E28 fetal pig mesencephalon with and without immunosuppressive treatment after grafting, or with additional co-grafting with immortalized rat neural cells transfected to produce GDNF. In the baseline condition, and again at 3 and 6 months postsurgery, all animals were subjected to quantitative [18F]fluorodopa PET scans and testing for motor impairment.
View Article and Find Full Text PDFJ Neurosci Methods
October 2001
PET-Center, Aarhus University Hospital, Nörrebrogade 44, DK-8000, C, Aarhus, Denmark.
Different methodologies for PET data analysis influence the magnitude of estimates of blood-brain transfer coefficients and rate constants for the metabolism of FDOPA in living striatum. We now test the effects on several kinetic parameters of automatic procedures for volume of interest (VOI) selection. We also tested the sensitivity of the estimates to dynamic frame sequence duration, and produced a standard method for minimizing the variations in physiological estimates for FDOPA kinetics in minipig brain.
View Article and Find Full Text PDFSynapse
September 1999
PET-Center, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
We measured 6-[(18)F]fluoro-L-DOPA (FDOPA) uptake and metabolism in the brain of 4-month-old female pigs (n = 8) using a high-resolution positron emission tomograph (PET) in 3D mode. The mean net blood-brain clearance of FDOPA (K(i)(D)) to striatum was 0.011 ml g(-1) min(-1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!