Spontaneous and evoked activity of neurons in the sensorimotor cortex was recorded in cats with learned conditioned placing reaction before, during, and after the iontophoretic application of synaptically active substances. It was shown that apart from direct excitatory effect on the cortical neurons during its application, glutamate (Glu) exerted some modulatory influence on unit activity in subsequent 20 min. Noradrenaline suppressed the background and evoked activity through beta 1 adrenoreceptors. Activation of beta 2 adrenoreceptors by metaproterenol was accompanied by facilitation of the background and evoked activity during application and 10-20 min after. The joint application of Glu and metaproterenol improved facilitation of neuronal responses evoked by conditioned stimuli. Application of levodopa, like Glu, increased the background and evoked activity of many sensorimotor cortical neurons. The joint effect of Glu and levodopa was not substantially more intensive than the changes produced by the isolated application of any of these substances. A nonselective blocker of DA1 and DA2 receptors haloperidol either increased or did not change the background and evoked activity of some cortical neurons. In contrast to isolated application of Glu, simultaneous application of Glu and haloperidol to neocortex suppressed the neuronal responses associated with conditioned movements. The results suggest that the Glu-induced potentiation is substantially realized through molecular mechanisms common for Glu and dopamine, probably, through Gi-proteins. The conclusion is drawn that the adrenergic and dopaminergic inputs to neocortical neurons are involved in the Glu-mediated plastic changes in the cortex during conditioning.
Download full-text PDF |
Source |
---|
Nat Neurosci
January 2025
Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.
To protect the body from infections, the brain has evolved the ability to coordinate behavioral and immunological responses. The conditioned immune response (CIR) is a form of Pavlovian conditioning wherein a sensory (for example, taste) stimulus, when paired with an immunomodulatory agent, evokes aversive behavior and an anticipatory immune response after re-experiencing the taste. Although taste and its valence are represented in the anterior insular cortex and immune response in the posterior insula and although the insula is pivotal for CIRs, the precise circuitry underlying CIRs remains unknown.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
Odor perception plays a critical role in early human development, but the underlying neural mechanisms are not fully understood. To investigate these, we presented appetitive and aversive odors to infants of both sexes at one month of age while recording functional magnetic resonance imaging (fMRI) and nasal airflow data. Infants slept during odor presentation to allow MRI scanning.
View Article and Find Full Text PDFBrain Behav Immun
January 2025
Department of Biology, Neuroendocrinology and Human Biology Unit, Institute for Animal Cell- and Systems Biology, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, D-22085 Hamburg, Germany. Electronic address:
This study investigated the neural correlates of perceiving visual contagion cues characteristic of respiratory infections through functional magnetic resonance imaging (fMRI). Sixty-two participants (32f/ 30 m; ∼25 years on average) watched short videos depicting either contagious or non-contagious everyday situations, while their brain activation was continuously measured. We further measured the release of secretory immunoglobulin A (sIgA) in saliva to examine the first-line defensive response of the mucosal immune system.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Precision Neuroscience, 54 W 21st Street, New York, New York, 10010, UNITED STATES.
Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function.
View Article and Find Full Text PDFHear Res
January 2025
Columbia University Irving Medical Center, Department of Otolaryngology, Head and Neck Surgery, 180 Fort Washington Ave, New York, 10032, NY, USA; Columbia University, Department of Biomedical Engineering, 1210 Amsterdam Ave, New York, 10027, NY, USA.
Sound-evoked displacement responses at the outer hair cell-Deiters' cell junction (OHC-DC) are of significant interest in cochlear mechanics, as OHCs are believed to be in part responsible for active tuning enhancement and amplification. Motion in the cochlea is three-dimensional, and the architecture of the organ of Corti complex (OCC) suggests the presence and mechanical importance of all three components of motion. Optical coherence tomography (OCT) displacement measurements of OHC-DC motion from different experimental preparations often show disparate results, potentially due to OCT measuring only the motion component along the beam axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!