Object: Confirmation of cervical spine stability is difficult to obtain in the comatose or obtunded trauma patient. Concurrent therapies such as endotracheal intubation and the application of rigid cervical collars diminish the utility of plain radiographs. Bony as well as supportive soft-tissue structures must be evaluated before the cervical spine can be determined to be uninjured. Although major injuries to extradural soft-tissue structures in the awake trauma patient are frequently excluded by physical examination, when the patient is obtunded the physical examination may be unreliable. Therefore, an enhanced diagnostic method for the evaluation of soft-tissue injury is desirable. The authors conducted a study in which magnetic resonance (MR) imaging was used as such a method to assess posttraumatic spinal stability in the comatose or obtunded patient.

Methods: Early, limited (sagittal T1- and T2-weighted) MR imaging was performed posttruama in 121 patients to assess soft-tissue injury. In all patients the mechanism of injury potentially could be associated with cervical spine instability, and each patient was endotracheally intubated because of head injury or severe multisystem injuries. All patients underwent imaging studies within 48 hours of injury and were either treated or cleared and spinal precautions were discontinued. Patients were excluded from this study if they had an obvious cervical spine injury identified on the initial radiographic studies or if they were determined to be too medically unstable to undergo MR imaging within the acute period (<48 hours postinjury). Thirty-one (25.6%) of the 121 patients were found to have sustained significant injury to the paravertebral ligamentous structures, the disc interspace, or the bony cervical spine. These injuries were undetected by plain radiography. The other 90 patients (74.4%) were determined within 48 hours not to have sustained a soft-tissue injury. Eight patients (6.6%) ultimately underwent surgery to treat the cervical spine injury, and MR imaging was the first test that identified the injury in each of these patients. There were no complications related to imaging procedures.

Conclusions: Sagittal T1- and T2-weighted MR imaging appears to be a safe, reliable method for evaluating the cervical spine for nonapparent injury in comatose or obtunded trauma patients. In the early postinjury period, nursing and medical care are thereby facilitated for patients in whom occult injury to the spine is ruled out and for whom those attendant precautions are unnecessary.

Download full-text PDF

Source
http://dx.doi.org/10.3171/spi.1999.91.1.0054DOI Listing

Publication Analysis

Top Keywords

cervical spine
20
comatose obtunded
12
trauma patient
12
magnetic resonance
8
resonance imaging
8
obtunded trauma
8
soft-tissue structures
8
physical examination
8
soft-tissue injury
8
cervical
6

Similar Publications

Objective: Spinal fusion is a commonly performed surgical procedure used to relieve pain, deformity, and instability of various spinal pathologies. Although there have been attempts to standardize spinal fusion assessment radiologically, there is currently no unified definition that also considers clinical symptomology. This review attempts to create a more holistic and standardized definition of spinal fusion.

View Article and Find Full Text PDF

A new 3D full-body scanner analyzing the sagittal and coronal balance of the adult spine: a preliminary prospective observational study.

Acta Neurochir (Wien)

January 2025

Department of Orthopaedic Surgery, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, Republic of Korea.

Background: The degenerative spondylosis can cause the difficulty in maintaining sagittal and coronal alignment of spine, and X-ray parameters are the gold standard to analyze the malalignment. This study aimed to develop a new 3D full body scanner to analyze the spinal balance and compare it to X-ray parameters.

Methods: Ninety-seven adult participants who suffer degenerative spondylosis underwent 3D full body scanning, whole spine X-rays, clinical questionnaires and body composition analyses.

View Article and Find Full Text PDF

Study Design: Systematic review and Meta-analysis.

Objectives: To quantify the association of preoperative depression on patient reported outcome measures (PROMS) after cervical spine surgery.

Methods: We systematically searched PubMed, Cochrane, Embase, Scopus, PsychInfo, Web of Science, and ClinicalTrials.

View Article and Find Full Text PDF

A Pilot Study on the Age-Dependent, Biomechanical Properties of Longitudinal Ligaments in the Human Cervical Spine.

Bioengineering (Basel)

January 2025

Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy.

The cervical spine ligaments, including the anterior longitudinal ligament (ALL) and posterior longitudinal ligament (PLL), play a key role in maintaining spinal stability by limiting excessive movements. This study investigates how ageing affects the mechanical properties of these ligaments. We analysed 33 samples from 12 human cervical spines (15 ALL, 18 PLL), averaging data from the same donors for independent analysis, resulting in 18 final samples (8 ALL, 10 PLL).

View Article and Find Full Text PDF

Objective: Cervical degeneration involves many pathophysiological changes. Vertebral bone loss, sclerotic hyperplasia of the vertebral body and intervertebral disc degeneration (IDD) are most common degenerative factors. However, whether there is a correlation between changes in vertebral bone mass and IDD remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!