Bovine coronavirus isolates from eight different states of the USA were compared for their antigenic properties and susceptibility to hygromycin B. Antigenic differences were observed among the isolates in a one-way hemagglutination-inhibition (HI) test using a polyclonal antiserum against the Mebus bovine coronavirus isolate. Differences were observed on isoelectric focusing among viral proteins with isoelectric points between 4.45-4.65. Most of the BCV isolates were susceptible to hygromycin B (0.5 mM) whereas a few hygromycin B resistant isolates were also found.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7117495 | PMC |
http://dx.doi.org/10.1016/s0378-1135(99)00042-5 | DOI Listing |
J Microorg Control
January 2025
Division of Microbiology, National Institute of Health Sciences.
Bovine coronavirus (BCoV), a significant cattle pathogen causing enteric and respiratory diseases, is primarily detected using reverse transcription-polymerase chain reaction. Our objective was to develop a novel detection method for BCoV by matrix-assisted laser desorption/ionization‒time-of-flight mass spectrometry (MALDI-TOF MS). Peptide mass fingerprint analysis revealed that nucleocapsid (N), membrane (M), and hemagglutinin-esterase (HE) were three main BCoV proteins.
View Article and Find Full Text PDFLife Sci
January 2025
School of Life Sciences, Tianjin University, Tianjin, China. Electronic address:
Lactoferrin (Lf) is a naturally occurring glycoprotein known for its antiviral and antibacterial properties and is present in various physiological fluids. Numerous studies have demonstrated its antiviral effectiveness against multiple viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza virus (IFV), herpes simplex virus (HSV), hepatitis B virus (HBV), and human immunodeficiency virus (HIV). Lf, a vital component of the mucosal defense system, plays a crucial role in inhibiting viral infection by binding to both host cells and viral particles, such as the Hepatitis C virus (HCV).
View Article and Find Full Text PDFVet Sci
December 2024
Department of Virology, Croatian Veterinary Institute, 10000 Zagreb, Croatia.
Acute gastroenteritis (AGE) in cattle significantly impacts the economy due to relatively high morbidity and mortality and decreased production. Its multifactorial nature drives its global persistence, involving enteric viruses, bacteria, protozoa, and environmental factors. Bovine (BoRVA) and bovine coronavirus (BCoV) are among the most important enteric RNA viruses causing AGE in cattle.
View Article and Find Full Text PDFVet Sci
December 2024
Biovet Inc., Division of Antech Diagnostics and Mars Petcare Science & Diagnostics Company, Saint-Hyacinthe, QC J2S 8W2, Canada.
The bovine respiratory disease complex (BRD) is a multifactorial disease caused by various bacterial and viral pathogens. Using rapid pathogen detection techniques is helpful for tailoring therapeutic and preventive strategies in affected animals and herds. The objective of this study was to report the frequency of 10 pathogens by multiplex RT-qPCR on samples submitted for BRD diagnosis to a diagnostic laboratory (Biovet Inc.
View Article and Find Full Text PDFVet Sci
November 2024
Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China.
Background: Bovine respiratory syncytial virus (BRSV) is a significant cause of bovine respiratory disease, resulting in significant losses to the cattle industry. For rapid detection of BRSV, a real-time recombinase-aided isothermal amplification assay (qRT-RAA) based on the gene of BRSV was developed in this study.
Results: The developed qRT-RAA assay showed good exponential amplification of the target fragment in 20 min at a constant temperature of 39 °C.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!