A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Imidazolines and the pancreatic B-cell. Actions and binding sites. | LitMetric

Imidazolines and the pancreatic B-cell. Actions and binding sites.

Ann N Y Acad Sci

Institute of Clinical Biochemistry, Hannover Medical School, Germany.

Published: June 1999

Stimulation of insulin secretion by imidazoline compounds displays variable characteristics. Phentolamine (10-100 microM) increased secretion of perifused mouse islets at nonstimulatory glucose concentrations (5 mM) and even in the absence of glucose. Idazoxan (20-100 microM) elicited a moderate increase in insulin secretion, which required the presence of a stimulatory glucose concentration (10 mM). Phentolamine is therefore a stimulator of secretion in its own right, whereas idazoxan may be termed an enhancer of secretion. Both compounds inhibited the activity of ATP-dependent K+ channels in inside-out patches from B-cells; however, idazoxan achieved only an incomplete block. Both compounds depolarized the B-cell plasma membrane to an extent that permitted the opening of voltage-dependent Ca2+ channels (-40 to -30 mV). An increase in cytoplasmic Ca2+ concentration was induced by phentolamine and much less so by idazoxan. Activation of protein kinase C, a possible mechanism to amplify Ca(2+)-induced secretion, could not be verified for phentolamine. It thus appears that stimulation of insulin secretion by phentolamine is due to its blocking effect on KATP channels, which may be the correlate of non-adrenergic imidazoline binding sites which were characterized in insulin-secreting HIT cells. Whether incomplete closure of KATP channels by idazoxan or additional effects are responsible for the requirement of high glucose to stimulate secretion remains to be clarified.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.1999.tb09365.xDOI Listing

Publication Analysis

Top Keywords

insulin secretion
12
binding sites
8
stimulation insulin
8
secretion
8
katp channels
8
phentolamine
5
idazoxan
5
imidazolines pancreatic
4
pancreatic b-cell
4
b-cell actions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!