Nitric oxide and the vascular endothelium in myocardial ischemia-reperfusion injury.

Ann N Y Acad Sci

Department of Surgery, Carlyle Fraser Heart Center, Crawford Long Hospital, Emory University School of Medicine, Atlanta, Georgia 30365, USA.

Published: June 1999

The normal coronary vascular endothelium (VE) tonically releases nitric oxide (NO) by converting L-arginine to citrulline by a constitutive NO synthase. Reperfusion after myocardial ischemia reduces basal and stimulated release of NO. This "vascular reperfusion injury" is mediated largely by neutrophils (PMN) through specific interactions between adhesion molecules on the endothelium and the PMN, an interaction that precedes myocyte injury. NO inhibits the PMN-mediated reperfusion injury by direct effects on both the PMN and the vascular endothelium. Cardioprotective strategies include augmentation of endogenous NO by the precursor L-arginine and the administration of exogenous NO donors at the time of perfusion, which (1) attenuates PMN adherence to the coronary artery and venous endothelium, (2) reduces PMN-mediated endothelial dysfunction, (3) reduces PMN accumulation in the area at risk, and (4) reduces infarct size. Hence, NO represents a powerful therapeutic tool with which to attenuate the consequences of ischemia-reperfusion injury on vascular injury and infarction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.1999.tb09251.xDOI Listing

Publication Analysis

Top Keywords

vascular endothelium
12
nitric oxide
8
ischemia-reperfusion injury
8
endothelium
5
injury
5
pmn
5
vascular
4
oxide vascular
4
endothelium myocardial
4
myocardial ischemia-reperfusion
4

Similar Publications

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

The regeneration of endothelial cells (ECs) lining arteries, veins, and large lymphatic vessels plays an important role in vascular pathology. To understand the mechanisms of atherogenesis, it is important to determine what happens during endothelial regeneration. A comparison of these processes in the above-mentioned vessels reveals both similarities and some significant differences.

View Article and Find Full Text PDF

Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease.

Int J Mol Sci

January 2025

Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland.

Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!