Ovarian carcinoma cells 10-fold resistant to the alkylating agent chlorambucil (CBL) were isolated after repeated exposure of the parent cells to gradually escalating concentrations of the drug. The resistant variant, A2780(100), was highly cross-resistant (9-fold) to melphalan and showed lower-level resistance to other cross-linking agents. The resistant A2780(100) cells had almost 5-fold higher glutathione S-transferase (GST) activity than the parental A2780 cells with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. The pi-class GST(s) was the major isoform(s) in both cell lines. However, the resistant A2780(100) cells had at least 11-fold higher GST mu as compared with the parental cells, in which this isoform was barely detectable. A significant induction of GST mu was observed in A2780 cells, but not in the resistant cells, 18 hr after a single exposure to 100 microM CBL. The induction of GST mu by CBL was both time- and concentration-dependent. Assays of the conjugation of CBL with GSH showed that the human mu-class GST had 3.6- and 5.2-fold higher catalytic efficiency relative to the pi- and alpha-class GSTs, respectively. This difference was reflected in the relatively higher (about 6-fold) efficiency of CBL conjugation in A2780(100) cells as compared with the parental cells. These results have demonstrated for the first time a near-linear correlation between CBL resistance and overexpression of mu-class GSTs and suggest that this overexpression maybe responsible, at least in part, for the acquired resistance of ovarian carcinoma cells to CBL, and possibly the other bifunctional alkylating agents. Consistent with this hypothesis, we found evidence for decreased formation of DNA lesions in A2780(100) compared with the drug-sensitive A2780 cells after exposure to CBL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-2952(99)00142-2DOI Listing

Publication Analysis

Top Keywords

ovarian carcinoma
12
cells
12
a2780100 cells
12
a2780 cells
12
glutathione s-transferase
8
carcinoma cells
8
cbl
8
resistant a2780100
8
compared parental
8
parental cells
8

Similar Publications

VPS45 Contributes to the Progression of Hepatocellular Carcinoma by Triggering the Wnt/β-Catenin Signaling Pathway.

Mol Carcinog

January 2025

Department of Gastroenterology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.

Vacuolar protein sorting 45 (VPS45) has recently been implicated in the development of ovarian cancer and non-small cell lung cancer. However, its role in the onset and progression of hepatocellular carcinoma (HCC) remains unclear. This study aims to elucidate the function of VPS45 in HCC.

View Article and Find Full Text PDF

The emergence of DNAM-1 as the facilitator of NK cell-mediated killing in ovarian cancer.

Front Immunol

January 2025

Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.

Introduction: Ovarian cancer (OC) is the sixth most common malignancy in women and the poor 5-year survival emphasises the need for novel therapies. NK cells play an important role in the control of malignant disease but the nature of tumour-infiltrating and peripheral NK cells in OC remains unclear.

Methods: Using flow cytometric analysis, we studied the phenotype and function of NK cells in blood, primary tumour and metastatic tissue in 80 women with OC.

View Article and Find Full Text PDF

Ovarian clear cell carcinoma (OCCC), particularly advanced or recurrent settings, is generally resistant to platinum-based chemotherapy, warranting novel therapeutic strategies. Mutations in the phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin kinase (PI3K/AKT/mTOR) pathway are frequently reported in OCCC. Therefore, we hypothesized that the PI3K/mTOR dual inhibitor, GSK458, and arsenic trioxide may exert synergistic anti-tumor effects on OCCC.

View Article and Find Full Text PDF

Introduction: Multimodal anticancer therapies greatly damage the fertility of breast cancer patients, which raises urgent demand for fertility preservation. The standard options for fertility preservation are oocyte and embryo cryopreservation; both require controlled ovarian hyperstimulation (COH). However, there are safety concerns regarding breast cancer relapse due to the elevated serum estradiol levels during COH.

View Article and Find Full Text PDF

Ovarian cancer is the seventh most common lethal tumor among women in the world. FOXM1 is a transcription factor implicated in the initiation and progression of ovarian cancer by regulating key oncogenic genes. The role of regulatory regions in regulating the expression of FOXM1 in ovarian cancer is not completely clarified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!