We investigated whether the adenosine triphosphate (ATP)-sensitive K+ (K(ATP)) channel activation by bimakalim, at concentrations devoid of both negative inotropic and action-potential duration (APD) shortening effects, might exhibit myocardial protection after hypoxia and reoxygenation in human atrial myocardium by using 112 preparations. The recovery of contractility of human atrial trabeculae, subjected either to short-duration (5 min) or to long-duration (60 min) and severe (high pacing rate) hypoxia followed by reoxygenation, was assessed by challenging with dobutamine. Treated preparations were exposed to 10 or 100 nM bimakalim, 1 microM glibenclamide, or both before hypoxia. Variations of isometric developed tension (%DT) or APD90 were studied. At concentrations <100 nM, bimakalim showed no negative inotropic effects and did not modify significantly APD90 either in normoxia or in hypoxic conditions. In the short-duration hypoxia protocol, preparations treated with bimakalim showed a dobutamine-induced %DT increase significantly higher (p < 0.001) than in controls and similar to that observed in the absence of hypoxia. This bimakalim effect was blocked by glibenclamide. In the long-duration hypoxia protocol, %DT after dobutamine was 50% of that observed in normoxic preparations. Preparations treated with bimakalim showed after dobutamine %DT more than twofold above controls (p < 0.001), whereas in the glibenclamide group, recovery of DT with dobutamine remained 50% of what observed in normoxia (p < 0.001). In conclusion, exposure to hypoxia (either short- or long-lasting) and reoxygenation affects contractility of human atrial myocardium with pronounced reduction of the positive inotropic action of dobutamine. Pretreatment with bimakalim restores the response expected in the absence of hypoxia, and glibenclamide blocks the effect of bimakalim or further impairs the response to dobutamine when used alone before long-duration hypoxia. Evidence is provided for protective effects of the K(ATP) opener bimakalim on the human myocardial contractile function in conditions of hypoxia/reoxygenation, at concentrations at which negative inotropism and APD90 shortening are not contributory.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00005344-199907000-00025DOI Listing

Publication Analysis

Top Keywords

hypoxia reoxygenation
8
human atrial
8
protection human
4
human myocardium
4
myocardium vitro
4
vitro katp
4
katp activation
4
activation low
4
low concentrations
4
concentrations bimakalim
4

Similar Publications

Ischemia reperfusion-induced myocardial injury is a prominent pathological feature in patients with coronary artery disease, contributing to significant mortality and morbidity rates. Mangiferin (MGF), the main active ingredient extracted from Anemarrhena asphodeloides Bge, has anti-inflammatory, anti-oxidation, anti-diabetes, and anti-tumor effects. The present study confirmed that the GAS6/Axl pathway was identified as a promising novel target for the treatment of myocardial ischemia reperfusion (IR) injury.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid decline in renal function. Renal ischemia-reperfusion injury (RIRI) is one of the main causes of AKI with the underlying mechanism incompletely clarified. The liver X receptors (LXRs), including LXRα and LXRβ, are members of the nuclear receptor superfamily.

View Article and Find Full Text PDF

Myosin light chain 9 mediates graft fibrosis after pediatric liver transplantation through TLR4/MYD88/NF-κB signaling.

Cell Mol Gastroenterol Hepatol

January 2025

Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, China; Tianjin Key Laboratory of Organ Transplantation, Tianjin First Central Hospital, Tianjin, China. Electronic address:

Background & Aims: The incidence of graft fibrosis is elevated following pediatric liver transplantation (pLT) and is influenced by cold ischemic time (CIT). Myosin light chain 9 (MYL9), a member of the myosin family, could act on hepatic stellate cells (HSCs) and induce a transition to active phase. We hypothesized that cold ischemic injury could stimulate MYL9 expression and lead to graft fibrosis.

View Article and Find Full Text PDF

Vascular dementia (VD) is a neurocognitive disorder resulting from cerebral vascular disorders, leading to the demise of neurons and cognitive deficits, posing significant health concerns globally. Derived from Ginkgo biloba leaves, EGb761 is a potent bioactive compound widely recognized for its benefits in treating cerebrovascular diseases. Previous studies have demonstrated that the administration of EGb761 to VD rats enhances the proliferation, differentiation, and migration of neurons, effectively alleviating cognitive dysfunction.

View Article and Find Full Text PDF

Background: The pathogenesis of acute kidney injury (AKI) is not fully understood. Tax1-binding protein 1 (TAX1BP1) modulates inflammation and apoptosis through the NF-kB signaling pathway, however, its specific role in ischemic AKI remains unclear.

Methods: We injected a TAX1BP1 overexpression plasmid into the tail vein of male C57BL/6 mice, followed by clamping the bilateral renal arteries to induce AKI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!