A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Glutamine synthetase expression in perinatal spiny mouse liver. | LitMetric

Glutamine synthetase expression in perinatal spiny mouse liver.

Eur J Biochem

Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, The Netherlands.

Published: June 1999

The pronounced increase in the protein/mRNA ratio of ammonia-metabolising enzymes in rat liver in the last prenatal week represents a clear example of a post-transcriptional level of control of gene expression. Both the underlying mechanism, namely an increase in translational efficiency of the mRNA and/or enhanced stability of the protein, and its importance for perinatal adaptation are unknown. We investigated this process in spiny mouse liver, because the comparison of rat and spiny mouse can discriminate adaptively from developmentally regulated processes in the perinatal period. We focused on glutamine synthetase (GS) because of the conveniently small size of its mRNA. Prenatally, GS enzyme activity slowly accumulated to approximately 1.3 U x g-1 liver at birth and postnatally more rapidly to 5.5 U x g-1 at 2 weeks. Both phases of enzyme accumulation obeyed exponential functions. Western-blot analysis showed that changes in GS activity reflected changes in GS protein content. GS mRNA content of the liver was 45 fmol x g-1 at 2 weeks before birth and slowly declined to approximately 25 fmol x g-1 at 2 weeks after birth. The GS protein/mRNA ratio increased 2.5-fold prenatally and sixfold postnatally. Analysis of prenatal and postnatal polysome profiles revealed no evidence of GS mRNA-containing ribonucleoprotein particles. Instead, GS mRNAs were (fully) occupied by 12 ribosomes, indicating regulation at the level of elongation. The kinetics of GS protein accumulation, in conjunction with GS mRNA content, are consistent with an approximately sixfold increase in its rate of synthesis at birth as the result of a corresponding stimulation of the rate of elongation.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1432-1327.1999.00436.xDOI Listing

Publication Analysis

Top Keywords

spiny mouse
12
g-1 weeks
12
glutamine synthetase
8
mouse liver
8
protein/mrna ratio
8
mrna content
8
fmol g-1
8
weeks birth
8
liver
5
synthetase expression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!