Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pronounced increase in the protein/mRNA ratio of ammonia-metabolising enzymes in rat liver in the last prenatal week represents a clear example of a post-transcriptional level of control of gene expression. Both the underlying mechanism, namely an increase in translational efficiency of the mRNA and/or enhanced stability of the protein, and its importance for perinatal adaptation are unknown. We investigated this process in spiny mouse liver, because the comparison of rat and spiny mouse can discriminate adaptively from developmentally regulated processes in the perinatal period. We focused on glutamine synthetase (GS) because of the conveniently small size of its mRNA. Prenatally, GS enzyme activity slowly accumulated to approximately 1.3 U x g-1 liver at birth and postnatally more rapidly to 5.5 U x g-1 at 2 weeks. Both phases of enzyme accumulation obeyed exponential functions. Western-blot analysis showed that changes in GS activity reflected changes in GS protein content. GS mRNA content of the liver was 45 fmol x g-1 at 2 weeks before birth and slowly declined to approximately 25 fmol x g-1 at 2 weeks after birth. The GS protein/mRNA ratio increased 2.5-fold prenatally and sixfold postnatally. Analysis of prenatal and postnatal polysome profiles revealed no evidence of GS mRNA-containing ribonucleoprotein particles. Instead, GS mRNAs were (fully) occupied by 12 ribosomes, indicating regulation at the level of elongation. The kinetics of GS protein accumulation, in conjunction with GS mRNA content, are consistent with an approximately sixfold increase in its rate of synthesis at birth as the result of a corresponding stimulation of the rate of elongation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1046/j.1432-1327.1999.00436.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!