31P NMR spectroscopy was used to study the products of the decomposition of the antitumor drug ifosfamide (IF, 1d) and its N-dechloroethylated metabolites, namely, 2,3-didechloroethylIF (1a) and 2- (1b) and 3-dechloroethylIF (1c), in buffered solutions at acidic pH. The first stage of acid hydrolysis of these four oxazaphosphorines is a P-N bond cleavage of the six-membered ring leading to the phosphoramidic acid monoesters (2a-d) of type R'HN(CH(2))(3)OP(O)(OH)NHR, with R and/or R' = H or (CH(2))(2)Cl. The electron-withdrawing chloroethyl group at the endocyclic and/or exocyclic nitrogens counteracts the endocyclic P-N bond hydrolysis. This effect is even more marked when the N-chloroethyl group is in the exocyclic position since the order of stability is 1d > 1c > 1b > 1a. In the second stage of hydrolysis, the remaining P-N bond is cleaved together with an intramolecular attack at the phosphorus atom by the non-P-linked nitrogen of the compounds 2a-d. This leads to the formation of a 2-hydroxyoxazaphosphorine ring with R = H (3a coming from compounds 2a,c) or (CH(2))(2)Cl (3b coming from compounds 2b,d) and to the release of ammonia or chloroethylamine. The third step is the P-N ring opening of the oxazaphosphorines 3a,b leading to the phosphoric acid monoesters, H(2)N(CH(2))(3)OP(O)(OH)(2) (4a) and Cl(CH(2))(2)HN(CH(2))(3)OP(O)(OH)(2) (4b-1), respectively. For the latter compound, the chloroethyl group is partially (at pH 5.5) or totally (at pH 7.0) cyclized into aziridine (4b-2), which is then progressively hydrolyzed into an N-hydroxyethyl group (4b-3). Compounds 3a,b are transient intermediates, which in strongly acidic medium are not observed with (31)P NMR. In this case, cleavage of the P-N bond of the type 2 phosphoramidic acid monoesters leads directly to the type 4 phosphoric acid monoesters. The phosphate anion, derived from P-O bond cleavage of these latter compounds, is only observed at low levels after a long period of hydrolysis. Compounds 1a-c and some of their hydrolytic degradation products (4b-1, 4b-2, diphosphoric diester [Cl(CH(2))(2)NH(CH(2))(3)OP(O)(OH)](2)O (5), and chloroethylamine) did not exhibit, as expected, any antitumor efficacy in vivo against P388 leukemia. (31)P NMR determination of the N-dechloroethylated metabolites of IF or its structural isomer, cyclophosphamide (CP), and their degradation compounds could provide an indirect and accurate estimation of chloroacetaldehyde amounts formed from CP or IF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm980587g | DOI Listing |
ASAIO J
January 2025
From the Department of Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio.
Right ventricular injury (RVI) in respiratory failure receiving veno-venous extracorporeal membrane oxygenation (VV ECMO) is associated with significant mortality. A scoping review is necessary to map the current literature and guide future research regarding the definition and management of RVI in patients receiving VV ECMO. We searched for relevant publications on RVI in patients receiving VV ECMO in Medline, EMBASE, and Web of Science.
View Article and Find Full Text PDFIsostructural Dy(III) and Er(III) complexes [L12Ln(H2O)5][I]3·L12·(CH2Cl2) (Ln = Dy (1), Er (3)) and [L22Ln(H2O)5][I]3·L22·(CH2Cl2)2 (Ln = Dy (2), Er (4)), with distorted pentagonal bipyramidal geometry (D5h) around the central metal were synthesized by utilizing two bulky phosphonamide ligands, adamantyl phosphonamide, (Ad)P(O)(NHiPr)2 (L1) and carbazolyl phosphoramide (Cz)P(O)(NHiPr)2 (L2). The resultant complexes were investigated for their magnetic properties in order to elucidate the impact of modification of the coordinating P-O bond environment either by increasing steric bulk and/or introduction of a third P-N bond at the central phosphorus atom. Magnetic studies revealed substantial energy barriers (Ueff) of 640 K and 560 K for Dy compounds 1 and 2, respectively, rendering them as some of the best-performing air-stable SIMs amongst the class of SIMs with D5h symmetry.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577, Japan.
Versatile P-N and P-O bond-forming reactions by an umpolung approach using air- and moisture-stable hydroxymethylphosphine sulfides were developed. Phosphine sulfides containing multiple hydroxymethyl groups could undergo sequential transformations combining P-N and P-O as well as P-C bond formations, providing a novel protocol for the synthesis of a variety of organophosphorus(V) compounds with P-N and P-O bonds.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Housing Environmental Design, Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 54896, Republic of Korea. Electronic address:
The traditional epoxy resin not only is flammable and non-recyclable and but also heavily dependents on petroleum resources, which cannot meet the requirements of fire prevention and sustainable development. In this study, a vanillin intermediate (VAP) with dynamic imine bond (C=N) was prepared by schiff base reaction between the lignin derivative vanillin (-CHO) and the cage-like polyhedral oligomeric silsesquioxane OA-POSS(-NH). Then, a biomass-based P-N-Si flame retardant (VAPD) was synthesized by adding 9,10-Dihydro-9-Oxa-10-Phosphaphenanthrene-10-Oxide (DOPO) into the VAP.
View Article and Find Full Text PDFInorg Chem
December 2024
Centro de Química Estrutural, Institute of Molecular Sciences, Department of Chemical Engineering Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1000-049 Lisboa, Portugal.
The reactivity of ruthenium hydride complexes supported by 2-((di--butylphosphaneyl)methyl)pyridine, and 2-(di--butylphosphaneyl)pyridine, , was explored. The reaction of {Ru(COD)Cl} with in the presence of base and 10 bar of H gave the expected complex [Ru(L1)(H)Cl], , while the same reaction with gave [Ru(L2)(P(H)Bu)(H)Cl], , that results from the cleavage of a C-P bond. We were able to establish that under the reaction conditions the first species formed is [Ru(L2)(H)Cl], , and that this species decomposes to give complex and is in equilibrium with [Ru(L)Cl], .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!