Two-hybrid assay: construction of an Escherichia coli system to quantify homodimerization ability in vivo.

Microbiology (Reading)

Dipartimento di Biologia, Università 'Tor Vergata' Roma, Via della Ricerca Scientifica, 00133 La Romanina (Roma), Italy.

Published: June 1999

A hybrid system which takes advantage of the properties of the lambda repressor allows detection of protein-protein interactions. Fusion of the cI N-terminal domain to a heterologous protein will result in a functional lambda repressor, able to strongly bind to its operator and conferring immunity to lambda infection only when the heterologous protein dimerizes efficiently. In this paper, construction of a recombinant plasmid which allows detection of the activity of the lambda chimeric repressor formed by the N-terminal part of cI fused with a heterologous protein is reported. This construct is interesting due to its potential to be integrated in any target gene of the bacterial host, thus permitting this hybrid assay to be performed, not only in Escherichia coli strains, but in every bacterial genus where the reporter gene can be expressed. In addition, because of its modular construction, this plasmid can be easily modified to be exploitable in many experimental situations, such as in the detection of promoter region activity.

Download full-text PDF

Source
http://dx.doi.org/10.1099/13500872-145-6-1485DOI Listing

Publication Analysis

Top Keywords

heterologous protein
12
escherichia coli
8
lambda repressor
8
allows detection
8
two-hybrid assay
4
assay construction
4
construction escherichia
4
coli system
4
system quantify
4
quantify homodimerization
4

Similar Publications

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus.

View Article and Find Full Text PDF

Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in .

Bioengineered

December 2025

Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.

Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.

View Article and Find Full Text PDF

The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.

View Article and Find Full Text PDF

is one of the commonly used hosts for heterologous enzyme expression, depending on media rich in carbon, nitrogen, and phosphate sources for optimal growth and enzyme production. Interestingly, our investigation of maltotetraose-forming amylase, a key enzyme for efficient maltotetraose synthesis, revealed that phosphate limitation significantly enhances the growth rate and production of heterologous enzymes in recombinant . Under phosphate-limited conditions in a 15 L fermenter, the enzyme activity reached 679.

View Article and Find Full Text PDF

BrCYP71 mutation resulted in stay-green in pak choi (Brassica rapa L. ssp. chinensis).

Theor Appl Genet

January 2025

College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.

BrCYP71 encoding multifunctional oxidase was mapped using BSA-Seq and linkage analysis, and its function in stay-green of pak choi was verified through Arabidopsis heterologous transgenic experiment. Stay-green refers to the phenomenon that plant leaves remain green during senescence and even after death, which is of great significance for improving the commerciality of leafy vegetables during storage or transportation and extending their shelf life. In this study, we identified a stay-green mutant of pak choi and named it nye2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!