A sensitive bio-analytical assay in plasma of the depsipeptide aplidine is reported, based on reversed-phase liquid chromatography and fluorescence detection of the trans-4'-hydrazino-2-stilbazole (4'H2S) derivative of the analyte. At ambient temperature, two conformations of the depsipeptide are observed in solution due to cis-trans isomerism at the proline-pyruvoyl peptide bond. Aplidine is isolated from the matrix by solid-phase extraction on an octadecyl modified silica stationary phase. After evaporation of the acetone eluate, a derivatization with 4'H2S is performed in a water-acetonitrile mixture at pH 4. The reaction mixture is injected directly into the chromatograph and the analyte is quantified by fluorescence detection at 410 and 560 nm for excitation and emission, respectively. The method has been validated in the 2-100 ng/ml-range, 2 ng/ml being the lower limit of quantification. Precision and accuracy both meet the current requirements for a bioanalytical assay. The identity of the 4'H2S reaction products of aplidine have been confirmed by mass spectrometric analysis. Finally, the method has been employed for a pilot pharmacokinetic study of aplidine in mice which demonstrated its usefulness for pharmacological research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0378-4347(99)00118-8DOI Listing

Publication Analysis

Top Keywords

liquid chromatography
8
fluorescence detection
8
bioanalysis aplidine
4
aplidine marine
4
marine antitumoral
4
antitumoral depsipeptide
4
depsipeptide plasma
4
plasma high-performance
4
high-performance liquid
4
chromatography derivatization
4

Similar Publications

Background: Hemodialysis may excessively remove valuable solutes. Untargeted metabolomics data from a prior study suggested that ergothioneine was depleted in the plasma of hemodialysis subjects. Ergothioneine is a dietary-derived solute with antioxidant properties.

View Article and Find Full Text PDF

Background: If the GFR falls far enough, uremic symptoms such as anorexia and nausea prompt the initiation of dialysis. Thrice weekly hemodialysis can prevent recurrence of these symptoms even when patients become anuric. To accomplish this it must maintain the plasma levels of the uremic solutes which cause these symptoms lower than they were when dialysis was initiated.

View Article and Find Full Text PDF

Automated High-Throughput Affinity Capture-Mass Spectrometry Platform with Data-Independent Acquisition.

J Proteome Res

January 2025

Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States.

Affinity capture (AC) combined with mass spectrometry (MS)-based proteomics is highly utilized throughout the drug discovery pipeline to determine small-molecule target selectivity and engagement. However, the tedious sample preparation steps and time-consuming MS acquisition process have limited its use in a high-throughput format. Here, we report an automated workflow employing biotinylated probes and streptavidin magnetic beads for small-molecule target enrichment in the 96-well plate format, ending with direct sampling from EvoSep Solid Phase Extraction tips for liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis.

View Article and Find Full Text PDF

Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.

View Article and Find Full Text PDF

QuanFormer: A Transformer-Based Precise Peak Detection and Quantification Tool in LC-MS-Based Metabolomics.

Anal Chem

January 2025

State Key Laboratory of Cellular Stress Biology, Institute of Artificial Intelligence, School of Life Sciences, Faculty of Medicine and Life Sciences, National Institute for Data Science in Health and Medicine, XMU-HBN skin biomedical research center, Xiamen University, Xiamen, Fujian 361102, China.

In metabolomic analysis based on liquid chromatography coupled with mass spectrometry, detecting and quantifying intricate objects is a massive job. Current peak picking methods still cause high rates of incorrectly picked peaks to influence the reliability and reproducibility of results. To address these challenges, we developed QuanFormer, a deep learning method based on object detection designed to accurately quantify peak signals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!