FRAP (fluoride-resistant acid phosphatase)-reactivity in the substantia gelatinosa of the mouse spinal trigeminal nucleus caudalis (STNC) was examined by light and electron microscopy. Degenerated figures of terminals caused by capsaicin were compared with the FRAP-positive terminals. Scalloped (fan-like) or indented, sinuous, slender, and cap-like figures with closely packed agranular synaptic vesicles of various sizes were common to both FRAP-positive and capsaicin-sensitive terminals. These terminals had glomerular or nonglomerular endings. Sometimes FRAP-positive and capsaicin-sensitive glomerular terminals made presynapses with surrounding dendrites. Frequently, both nonglomerular terminals were in direct contact with the neuronal soma. The terminal features of FRAP-positive and capsaicin-sensitive ones in the mouse STNC are the same as those seen in the superficial dorsal horn of the spinal cord. These findings suggest that some of the FRAP-positive terminals are capsaicin-sensitive, thereby indicating their nociceptive primary afferent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2535/ofaj1936.76.1_33 | DOI Listing |
Okajimas Folia Anat Jpn
May 1999
Department of 2nd Oral Anatomy, Tokushima University School of Dentistry, Japan.
FRAP (fluoride-resistant acid phosphatase)-reactivity in the substantia gelatinosa of the mouse spinal trigeminal nucleus caudalis (STNC) was examined by light and electron microscopy. Degenerated figures of terminals caused by capsaicin were compared with the FRAP-positive terminals. Scalloped (fan-like) or indented, sinuous, slender, and cap-like figures with closely packed agranular synaptic vesicles of various sizes were common to both FRAP-positive and capsaicin-sensitive terminals.
View Article and Find Full Text PDFOkajimas Folia Anat Jpn
August 1997
Second Department of Oral Anatomy, School of Dentistry, Tokushima University.
Fluoride-resistant acid phosphatase (FRAP)-reactive terminals making contact with interneuronal soma are found in the substantia gelatinosa of the mouse spinal dorsal horn. About one half of the interneuronal somata receive FRAP-positive boutons. By electron microscopy, these FRAP-positive terminals appear small, dark, slender, roundish, cap-like, ellipsoid or sinuous and electron-dense, scalloped (fan-like) contours with clear spherical synaptic vesicles of variable size, some large dense-core vesicles and mitochondria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!