Involvement of PDGF in pressure-induced mesangial cell proliferation through PKC and tyrosine kinase pathways.

Am J Physiol

Second Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu 807-8555, Japan.

Published: July 1999

In glomerular hypertension, mesangial cells (MC) are subjected to at least two physical forces: mechanical stretch and high transmural pressure. Increased transmural pressure, as well as mechanical stretch, promotes MC proliferation, which may enhance glomerulosclerosis. The exact mechanism of this effect is not fully understood. We examined the effects of transmural pressure alone on cell proliferation and DNA synthesis and investigated the role of platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF), candidates for mediation of glomerular diseases, in the pressure-induced events. Pressure was applied to cultured MC placed in a sealed chamber using compressed helium gas. Application of pressure resulted in a time-dependent ( approximately 2 h) and pressure level-dependent (approximately 80 mmHg) increase in cell number (1.4-fold) and [(3)H]thymidine incorporation (2.7-fold). Pressure-induced DNA synthesis was significantly suppressed by inhibitors of phospholipase C (2-nitro-4-carboxyphenyl-N, N-diphenylcarbamate), protein kinase C [1-(5-isoquinolinylsulfonyl)-2-methylpiperazine and chelerythrine], or tyrosine kinases (genistein). Pressure caused a rapid but transient formation of inositol 1,4,5-trisphosphate, which was blocked by the phospholipase C inhibitor. Pressure also promoted a rapid increase in tyrosine kinase activity. Pressure increased mRNA levels of PDGF-B, with a peak at 6 h, but not those of PDGF-A or bFGF. Pressure-induced DNA synthesis was partially inhibited by a neutralizing anti-PDGF antibody but not by an antibody against bFGF or nonimmune IgG. Our results indicated that pressure by itself increases DNA synthesis and proliferation of cultured rat MC possibly through activation of protein kinase C and tyrosine kinases, and PDGF-B could be partially involved in these pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.1999.277.1.F105DOI Listing

Publication Analysis

Top Keywords

dna synthesis
16
transmural pressure
12
pressure
10
cell proliferation
8
tyrosine kinase
8
mechanical stretch
8
pressure increased
8
growth factor
8
pressure-induced dna
8
protein kinase
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!