Scanning electron microscopy was used to detect ultrastructural protuberances on the cellulolytic anaerobe Clostridium cellulovorans. Numerous ultrastructural protuberances were observed on cellulose-grown cells, but few were detected on glucose-, fructose-, cellobiose-, or carboxymethylcellulose (CMC)-grown cells. Formation of these protuberances was detected within 2 h of incubation in cellulose medium, but 4 h incubation was required before numerous structures were observed on the cells. When a soluble carbohydrate or CMC was mixed with cellulose-grown cells, the ultrastructural protuberances could no longer be detected. In fact, no protuberances were observed within 5 min following the addition of glucose, cellobiose, or methylglucose to cellulose-grown cells. The presence of these protuberances corresponded with the binding of the Bandeiraea simplicifolia BSI-B4 isolectin to the cell. Cellulose-grown cells had a greater level of observable lectin binding than cellobiose-grown cells, and lectin binding was not detected on glucose- or fructose-grown cells. In addition, lectin binding ability was lost by cellulose-grown cells following the addition of glucose, fructose, or methylglucose to the cellulose medium. A cellulose-affinity protein fraction expressing cellulase activity was also detected in cell extracts of cellobiose- or cellulose-grown cultures. However, this protein fraction was not detected in extracts of glucose-grown cultures, and was rapidly lost (within 5 min) following the addition of glucose to cellulose-grown cultures. The ability of C. cellulovorans to adhere to cellulose was also affected by the energy substrate, but not in the same manner as the protuberance formation or the cellulase-containing protein fraction. Rather, cellobiose-, cellulose-, and CMC-grown cultures adhered to cellulose, but this adherence was not affected by addition of glucose to the medium. This is the first report that soluble carbohydrates caused the rapid loss of some cellulose-inducible systems of C. cellulovorans.

Download full-text PDF

Source
http://dx.doi.org/10.1139/w99-004DOI Listing

Publication Analysis

Top Keywords

cellulose-grown cells
20
addition glucose
16
ultrastructural protuberances
12
lectin binding
12
protein fraction
12
cells
9
clostridium cellulovorans
8
protuberances observed
8
detected glucose-
8
cellulose medium
8

Similar Publications

Surface modified cellulose scaffolds for tissue engineering.

Cellulose (Lond)

November 2016

1Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, BA2 7AY UK.

Article Synopsis
  • This study explores how cellulose can support cell growth in tissue engineering without needing additional matrix ligands on its surface.
  • Bacterial cellulose sheets were modified to have either a positive or negative charge, with positive charge enhancing cell attachment by 70%, while negative charge showed low attachment levels.
  • The research indicates that only a small amount of positive modification is necessary to promote cell adhesion, making positively charged bacterial cellulose a promising material for tissue engineering applications.
View Article and Find Full Text PDF

Unlabelled: Clostridium termitidis CT1112 is an anaerobic, mesophilic, cellulolytic bacterium with potential applications in consolidated bioprocessing of lignocellulosic biomass. To understand how C. termitidis degrades lignocellulose, iTRAQ-based 2D HPLC-MS/MS proteomics was used to measure protein expression in cell lysates and extracellular (secretome) fractions of C.

View Article and Find Full Text PDF

Clostridium thermocellum is a Gram-positive thermophilic anaerobic bacterium with the ability to directly convert cellulosic biomass into useful products such as ethanol and hydrogen. In this study, a quantitative comparative proteomic analysis of the organism was performed to identify proteins and biochemical pathways that are differentially utilized by the organism after growth on cellobiose or cellulose. The cytoplasmic and membrane proteomes of C.

View Article and Find Full Text PDF

Hydrolytic and phosphorolytic metabolism of cellobiose by the marine aerobic bacterium Saccharophagus degradans 2-40T.

J Ind Microbiol Biotechnol

August 2011

Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.

Saccharophagus degradans 2-40 is a marine gamma proteobacterium that can produce polyhydroxyalkanoates from lignocellulosic biomass using a complex cellulolytic system. This bacterium has been annotated to express three surface-associated β-glucosidases (Bgl3C, Ced3A, and Ced3B), two cytoplasmic β-glucosidases (Bgl1A and Bgl1B), and unusual for an aerobic bacterium, two cytoplasmic cellobiose/cellodextrin phosphorylases (Cep94A and Cep94B). Expression of the genes for each of the above enzymes was induced when cells were transferred into a medium containing Avicel as the major carbon source except for Bgl1B.

View Article and Find Full Text PDF

Extracellular culture fluid of Fibrobacter succinogenes S85 grown on glucose, cellobiose, cellulose or wheat straw was analysed by 2D-NMR spectroscopy. Cellodextrins did not accumulate in the culture medium of cells grown on cellulose or straw. Maltodextrins and maltodextrin-1P were identified in the culture medium of glucose, cellobiose and cellulose grown cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!