Background And Objectives: The use of liquid and solid albumin protein solders to enhance laser tissue repairs has been shown to significantly improve postoperative results. The published results of laser-solder tissue repair studies have, however, indicated inconsistent success rates. This can be attributed to variations in laser irradiance, exposure time, solder composition, chromophore type, and concentration. An in vitro study was performed using indocyanine green-doped albumin protein solders in conjunction with an 808 nm diode laser to determine optimal laser and solder parameters for tissue repair in terms of tensile strength and stability during hydration.

Study Design/materials And Methods: Twenty-five different combinations of laser irradiance (6.4, 12.7, 19.1, 25.5, 31.8 W/cm2) and exposure time (20, 30, 40, 50, 100 or 40, 60, 80, 100, 200 seconds) were used. The effect of changing bovine serum albumin (BSA) concentration (25% and 60%) and indocyanine green (ICG) dye concentration (2.5 mg/ml and 0.25 mg/ml) of the protein solder on the tensile strength of the resulting bonds was investigated. The effect of hydration on bond stability was also investigated using both tensile strength and scanning electron microscopy analysis.

Results: Tensile strength was observed to decrease significantly with increasing irradiance. An optimum exposure time was found to exist where further irradiation did not improve the tensile strength of the bond. Tensile strength was found to be greatly improved by increasing the BSA concentration. Finally, the lower ICG dye concentration increased the penetration depth of the laser light in the protein solder leading to higher tensile strengths. The strongest repairs were formed by using 6.4 W/cm2 irradiation for 50 seconds with a protein solder composed of 60% BSA and 0.25mg/ml ICG. In addition, the solid protein solder provided more stable adhesion to the tissue than did the liquid protein solder when the tissue was submerged in a hydrated environment.

Conclusions: This study greatly enhances the current understanding of the various factors affecting the soldering process. It provides a strong basis for optimization of the laser light delivery parameters and the solder constituents to achieve strong and reliable laser tissue repairs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(sici)1096-9101(1999)24:5<319::aid-lsm2>3.0.co;2-nDOI Listing

Publication Analysis

Top Keywords

tensile strength
28
protein solder
20
laser tissue
12
exposure time
12
laser
9
tensile
8
strength scanning
8
scanning electron
8
electron microscopy
8
albumin protein
8

Similar Publications

Characterization and film-forming properties of collagen from three species of sea cucumber from the South China Sea: Emphasizing the effect of transglutaminase.

Int J Biol Macromol

January 2025

College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China. Electronic address:

This study aimed to investigate the structural characteristics of Stichopus horrens collagen (SHC), Holothuria scabra collagen (HSC), and Holothuria leucospilota collagen (HLC) and to assess the effect of transglutaminase (TGase) on their film-forming properties. The results indicated that the collagens from three species of sea cucumbers were type I collagen with a complete triple helical structure. The thermal denaturation temperature of HLC (34.

View Article and Find Full Text PDF

The effective prevention and treatment of anastomotic leakage after intestinal anastomosis for colorectal diseases is still a major clinical challenge. In order to assist intestinal anastomosis healing and avoid anastomotic leakage caused by high tension, low blood supply or infection, we designed a double-layer nanofiber intestinal anastomosis scaffold, which was composed of electrospun PTMC/PHA nanofibers as the main layer, and electrospun PVA/OHA-Gs nanofibers with antibacterial properties as the antibacterial surface layer. This double-layer scaffold has good toughness, its maximum tensile force value could reach 8 N, elongation could reach 400 %, and it has hydrophilic properties, and its contact angle was about 60°.

View Article and Find Full Text PDF

Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.

View Article and Find Full Text PDF

Management of wind-turbine blade waste as high-content concrete addition: Mechanical performance evaluation and life cycle assessment.

J Environ Manage

January 2025

Department of Civil Engineering, Escuela Politécnica Superior, University of Burgos, c/ Villadiego s/n, 09001, Burgos, Spain. Electronic address:

The management of end-of-life wind-turbine blades in the coming years will be necessary, as a clear solution for their recycling is yet to be found due to their complex composition. The suitability of their mechanical recycling is therefore evaluated in this paper, obtaining Raw-Crushed Wind-Turbine Blade (RCWTB) for subsequent incorporation in high amounts of up to 10% vol. in concrete, replacing the aggregates to achieve Fiber-Reinforced Concrete (FRC).

View Article and Find Full Text PDF

Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!