Disseminated dedifferentiated thyroid epithelial carcinoma, which cannot sufficiently concentrate therapeutic radioiodide, is a terminal disease without any effective systemic treatment or chemotherapy. This is a likely consequence of loss of human sodium-iodide symporter (hNIS) function. We hypothesized that hNIS transcriptional failure in thyroid carcinoma could be consequent to methylation of DNA in critical regulatory regions and could be reversed with chemical demethylation treatment. Analysis of hNIS messenger ribonucleic acid (mRNA) expression in 23 tumor samples revealed that although loss of this expression corresponded to loss of clinical radioiodide uptake, some thyroid carcinomas with hNIS mRNA expression did not concentrate iodide, suggesting additional posttranscriptional mechanisms for loss of hNIS function. In addition, analysis of DNA methylation in CpG-rich regions of the hNIS promoter extending to the first intron failed to define specific methylation patterns associated with transcriptional failure in human thyroid tumor samples. In seven human thyroid carcinoma cell lines lacking hNIS mRNA, treatment with 5-azacytidine or sodium butyrate was able to restore hNIS mRNA expression in four cell lines and iodide transport in two cell lines. Investigation of methylation patterns in these cell lines revealed that successful restoration of hNIS transcription was associated with demethylation of hNIS DNA in the untranslated region within the first exon. This was also associated with restoration of expression of thyroid transcription factor-1. These results suggest a role for DNA methylation in loss of hNIS expression in thyroid carcinomas as well as a potential application for chemical demethylation therapy in restoring responsiveness to therapeutic radioiodide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jcem.84.7.5815 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
It has been well accumulated that G-quadruplex (G4-DNA) has great anticancer relevance, and various heterocyclic moieties have been synthesized and examined as potent G4-DNA binders with promising anticancer activity. Here, we have synthesized a series of naphthalimide-triazole-coumarin conjugates by substituting various amines and further examine their anticancer activity against 60 human cancer cell lines at 10 μM. One and five dose concentration results reveal low values of MG-MID GI for compounds including (3.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research. Mustansiriyah University, Baghdad, Iraq.
Background: The use of bacterial vaccines as a potential Bacterial-Based Cancer Therapy (BBCT) presents an innovative approach, transforming these vaccines into multifunctional tools capable of serving dual roles in medicine.
Materials And Methods: This study aimed to conduct in vitro, immunity-independent experiments to investigate the anticancer properties of vaccine-derived bacterial toxoids on various cancer cell lines. Six concentrations of the DTP vaccine (5 x 10-4, 25 x 10-5, 125 x 10-6, 625 x 10-7, 312 x 10-7, and 15 x 10-6 µg/ml) were tested on two cancer cell lines (SKG and HCAM) and a normal Rat Embryonic Fibroblast (REF) cell line.
Asian Pac J Cancer Prev
January 2025
Department of Biotechnology, Kakatiya University, Warangal, Telangana, India.
Objective: A new library of Thiazolidine-2,4-dione-biphenyl Derivatives derivatives (10a-j) was designed and synthesized. All compounds were characterized by spectral data. Further, these were evaluated for their in vitro anticancer activity.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
Background: Acute Lymphoblastic Leukemia (ALL) is the most common type of leukemia among children. There are several types of drugs that are common in treating and controlling leukemia, including 6-M. Moreover, the anti-cancer effects of the Thiosemicarbazone-Ni complex were surveyed as well as 6-MP.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600, Dübendorf, Switzerland.
Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!