The antithrombotic beta-D-xyloside, naroparcil, has previously been shown to induce a dose-related increase of circulating glycosaminoglycans (GAGs) together with an antithrombin activity (anti-IIa) via heparin cofactor II (HCII) in the rabbit. In order to go further in the mechanisms, the relationship between the antithrombotic activity, the HCII-mediated anti-IIa activity and the plasma GAG content was investigated. We showed that the in vitro specific activity on the inhibition of thrombin by HCII of the plasma GAG extract from naroparcil-treated rabbits was increased by a factor of 60 when compared to controls. In addition, the fractionation of the plasma GAG extract by affinity chromatography on immobilized HCII led to a more potent material whereas the low-affinity fraction was shown to be inactive in thrombin inhibition by HCII. The qualitative analysis of GAGs showed the presence of the deltaDi-4S DS disaccharide, undetectable in control, which accounted for 22% in the unfractionated GAG extract and for 60% in the high affinity fraction. In vitro experiments using immuno-depleted plasma in antithrombin III (ATIII), HCII or both, indicated that the anti-IIa activity of the plasma GAG extract from naroparcil-treated rabbits was mainly due to HCII potentialisation. The unfractionated GAG extract and the high affinity fraction were shown to be antithrombotic in a Wessler-based model in the rat, giving ED80 values of 610 UA/kg and 56 UA/kg respectively whereas the low-affinity fraction was devoid of any antithrombotic activity. These results show that the antithrombotic activity of naroparcil is dependent on modification in the plasma GAG profile which inactivates thrombin via the HCII.
Download full-text PDF |
Source |
---|
Int J Mol Sci
January 2025
MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
Despite the success of combination antiretroviral therapy (cART) to suppress HIV replication, HIV persists in a long-lived reservoir that can give rise to rebounding viremia upon cART cessation. The translationally active reservoir consists of HIV-infected cells that continue to produce viral proteins even in the presence of cART. These active reservoir cells are implicated in the resultant viremia upon cART cessation and likely contribute to chronic immune activation in people living with HIV (PLWH) on cART.
View Article and Find Full Text PDFBiotechnol Lett
January 2025
Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
Purpose: Cartilage repair necessitates adjunct therapies such as cell-based approaches, which commonly use MSCs and chondrocytes but is limited by the formation of fibro-hyaline cartilage. Articular cartilage-derived chondroprogenitors(CPs) offer promise in overcoming this, as they exhibit higher chondrogenic and lower hypertrophic phenotypes. The study aimed to compare the efficacy of various cell types derived from adult and foetal cartilage suspended in platelet-rich plasma(PRP) in repairing chondral defects in an Ex-vivo Osteochondral Unit(OCU) model.
View Article and Find Full Text PDFHIV-1 assembly is initiated by the binding of Gag polyproteins to the inner leaflet of the plasma membrane, mediated by the myristylated matrix (MA) domain of Gag. Subsequent to membrane binding, Gag oligomerizes and buds as an immature, non-infectious virus particle, which, upon cleavage of the Gag precursor by the viral protease, transforms into a mature, infectious virion. During maturation, the MA lattice underlying the viral membrane undergoes a structural rearrangement and the newly released capsid (CA) protein forms a mature capsid that encloses the viral genome.
View Article and Find Full Text PDFmBio
December 2024
Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA.
HIV-1 unspliced RNA serves two distinct functions during viral replication: it is packaged into particles as the viral genome, and it is translated to generate Gag/Gag-Pol polyproteins required for virus assembly. Recent studies have demonstrated that in cultured cells, HIV-1 uses multiple transcription start sites to generate several unspliced RNA species, including two major transcripts with three and one 5' guanosine, referred to as 3G and 1G RNA, respectively. Although nearly identical, 1G RNA is selected over 3G RNA to be packaged as the virion genome, indicating that these RNA species are functionally distinct.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!