The Trypanosoma brucei gene encoding the 60 S ribosomal protein L27a (L29) homologue has been cloned and characterised. The complete open reading frame encodes a small basic protein of 145 amino acids with a predicted molecular weight of 15,950. The L27a amino acid sequence shares 45-58% identity with other L27a (L29) homologues. Southern blot hybridisation suggests that the gene is present in multiple copies. Northern blot analysis of RNA from three T. brucei life cycle stages show that mRNA levels are two-fold higher in procyclic than in early or late bloodstream stages. This infers that this highly conserved ribosomal protein may play an important role in translational regulation through the life cycle of trypanosomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0020-7519(99)00023-5DOI Listing

Publication Analysis

Top Keywords

ribosomal protein
12
l27a l29
12
protein l27a
8
trypanosoma brucei
8
life cycle
8
analysis ribosomal
4
protein
4
l27a
4
l29 gene
4
gene trypanosoma
4

Similar Publications

Long noncoding RNAs (lncRNAs) are key regulators during gastric cancer (GC) development and may be viable treatment targets. In the present study, we showed that the expression of the long intergenic noncoding RNA 01016 (LINC01016) is significantly higher in GC tissues with lymph node metastasis (LNM) than those without LNM. LINC01016 overexpression predicts a poorer relapse-free survival (RFS) and overall survival (OS).

View Article and Find Full Text PDF

Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs).

View Article and Find Full Text PDF

Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR.

View Article and Find Full Text PDF

WBSCR16 is essential for mitochondrial 16S rRNA processing in mammals.

Nucleic Acids Res

January 2025

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 573 Xujiahui Road, Huangpu District, Shanghai 200025, China.

Mitochondrial rRNAs play important roles in regulating mtDNA-encoded gene expression and energy metabolism subsequently. However, the proteins that regulate mitochondrial 16S rRNA processing remain poorly understood. Herein, we generated adipose-specific Wbscr16-/-mice and cells, both of which exhibited dramatic mitochondrial changes.

View Article and Find Full Text PDF

Specific modulation of 28S_Um2402 rRNA 2'--ribose methylation as a novel epitranscriptomic marker of ZEB1-induced epithelial-mesenchymal transition in different mammary cell contexts.

NAR Cancer

March 2025

Ribosome, Translation and Cancer Team, LaEx DEVweCAN, Institut Convergence Plascan, LYriCAN+, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France.

The epithelial-mesenchymal transition (EMT) is a dynamic transdifferentiation of epithelial cells into mesenchymal cells. EMT programs exhibit great diversity, based primarily on the distinct impact of molecular activities of the EMT transcription factors. Using a panel of cancer cell lines and a series of 71 triple-negative primary breast tumors, we report that the EMT transcription factor ZEB1 modulates site-specific chemical modifications of ribosomal RNA (rRNA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!