Genetic and epigenetic changes of intercellular communication genes during multistage carcinogenesis.

Cancer Detect Prev

Unit of Multistage Carcinogenesis, International Agency for Research on Cancer, Lyon, France.

Published: August 1999

During multistage carcinogenesis, the functions of several key genes involved in cell growth control must be damaged. Such genes include not only those involved in cell cycle control of individual cells, but also those involved in the coordination of cell growth throughout a given tissue through cell-cell communication. The most intimate form of intercellular communication is mediated by gap junctions. Gap junctional intercellular communication (GJIC) is known to transfer small water soluble molecules, including cAMP and IP3, from the cytoplasm of one cell to that of its neighbors; the growth of a given GJIC-associated cell is thus kept in check by other GJIC-connected cells. Most tumor cells have a reduced ability to communicate among themselves and/or with surrounding normal cells, confirming the importance of intact GJIC in growth control. When connexin (gap junction protein) genes are transfected into such cells, normal cell growth control is often recovered. Certain dominant-negative mutant connexin genes can reverse such tumor suppression. While these results suggest that connexin genes form a family of tumor suppressor genes, so far we have found no connexin gene mutations in human tumors; only two connexin gene mutations were found in chemically induced rat tumors. On the other hand, our recent studies suggest that connexin genes may be inactivated by hypermethylation of their promoter regions, suggesting that epigenetic inactivation of connexin genes may be a mechanism of GJIC disturbance in certain tumors. However, in many tumor cells connexins are normally expressed but aberrantly localized. The mechanisms of aberrant localization of connexins include lack of an appropriate cell-cell recognition apparatus and aberrant phosphorylation of connexins. These results suggest that GJIC disorders may occur not only because of aberrant expression of connexin genes themselves, but also as a result of disruption of various control mechanisms of the protein functions.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1525-1500.1999.99037.xDOI Listing

Publication Analysis

Top Keywords

connexin genes
20
intercellular communication
12
cell growth
12
growth control
12
genes
10
multistage carcinogenesis
8
involved cell
8
tumor cells
8
connexin
8
connexin gene
8

Similar Publications

Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones. Many patients with CMD suffer from neurological symptoms.

View Article and Find Full Text PDF

Evaluation of unitary conductance of gap junction channels based on stationary fluctuation analysis.

Methods

January 2025

Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas 50103, Lithuania; Department of Mathematical Modelling, Kaunas University of Technology, Kaunas 51368, Lithuania.

Gap junction (GJ) channels, formed of connexin (Cx) protein, enable direct intercellular communication in most vertebrate tissues. One of the key biophysical characteristics of these channels is their unitary conductance, which can be affected by mutations in Cx genes and various biochemical factors, such as posttranslational modifications. Due to the unique intercellular configuration of GJ channels, recording single-channel currents is challenging, and precise data on unitary conductances of some Cx isoforms remain limited.

View Article and Find Full Text PDF

Gap junctions (GJs) play a pivotal role in intercellular communication between eukaryotic cells, including transfer of biomolecules that contribute to the innate and adaptive immune response. However, if, how and why viruses affect gap junction intercellular communication (GJIC) remains largely unexplored. Here, we describe how the alphaherpesvirus pseudorabies virus (PRV) triggers ERK1/2-mediated phosphorylation of the main gap junction component connexin 43 (Cx43) and closure of GJIC, which depends on the viral protein pUL46.

View Article and Find Full Text PDF

A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

Genome Med

January 2025

Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.

Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.

Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.

View Article and Find Full Text PDF

Background: Charcot-Marie-Tooth (CMT) disease is the most common inherited neuropathy. In this study, we aimed to analyze the genetic spectrum and describe phenotypic features in a large cohort from Türkiye.

Methods: Demographic and clinical findings were recorded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!