Objective: Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by lymphocytic infiltrations of the exocrine glands. Disease progression may lead to uncontrolled clonal proliferation of B lymphocytes and development of lymphoma. This study was undertaken to examine the possible involvement of the cell cycle checkpoint genes p53 and p21 in the pathophysiology of the syndrome.
Methods: Protein expression of p53 and p21 was studied, by immunohistochemistry and Western blot analysis, in minor salivary gland (MSG) biopsy specimens from 7 patients with SS and 5 control subjects. In addition, sequence analysis of the p53 gene was performed on DNA samples obtained from MSG biopsy samples of the same 7 patients with SS and from 4 patients with SS and in situ non-Hodgkin's lymphoma (NHL).
Results: The study revealed increased protein expression of p53 and p21 in MSG biopsy specimens from patients as compared with controls, while sequence analysis showed that the p53 gene was of the wild type. Furthermore, sequence analysis of the p53 gene from patients with SS and in situ NHL revealed 2 novel mutations in exon 5 of the p53 gene. These mutations are single-base substitutions and appear to be functional since exon 5 is included in the coding region of the p53 gene.
Conclusion: This is the first report on wild-type p53 gene activation in SS. Our findings indicate a probable role for the DNA damage response genes in the pathogenesis of this syndrome. The novel mutations of the p53 gene implicate dysregulation of this tumor suppressor gene as a possible mechanism for lymphoma development in SS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/1529-0131(199907)42:7<1466::AID-ANR21>3.0.CO;2-L | DOI Listing |
PLoS One
January 2025
Cell Therapy Center, The University of Jordan, Amman, Jordan.
Background: Hypoxia in tumor cells is linked to increased drug resistance and more aggressive behavior. In pancreatic cancer, the tumor microenvironment is notably hypoxic and exhibits strong immunosuppressive properties. Given that immunotherapy is now approved for pancreatic cancer treatment, further understanding of how pancreatic tumor cell hypoxia influences T-cell cytotoxicityis essential.
View Article and Find Full Text PDFSci Rep
January 2025
The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
Difficult-to-heal wounds management accounts for about 4% of healthcare costs, highlighting the need for innovative solutions. Extracellular signals drive cell proliferation during tissue regeneration, while epigenetic mechanisms regulate stem cell homeostasis, differentiation, and skin repair. Exploring epigenetic regulation in adipose-derived stem cells (ADSCs) holds promise for improving skin injury treatments.
View Article and Find Full Text PDFBiomacromolecules
January 2025
College of Chemistry, Sichuan University, Chengdu 610064, PR China.
Reactive oxygen species (ROS)-sensitive polymers are extensively used in cancer therapies. However, the ROS levels in the tumor microenvironment are often insufficient to trigger an adequate therapeutic response. Herein, we report a cinnamaldehyde ()-based ROS-responsive cationic polymer () and demonstrate its high efficiency in gene delivery and tumor cell growth inhibition.
View Article and Find Full Text PDFEpigenomics
January 2025
Cancer Research Group, School of Life Health and Chemical Sciences, The Open University UK, Milton Keynes, UK.
Background: Aggressive Variant Prostate Cancers (AVPCs) are incurable malignancies. Platinum-based chemotherapies are used for the palliative treatment of AVPC. The Polycomb Repressive Complex 2 (PRC2) promotes prostate cancer progression histone H3 Lysine 27 tri-methylation (H3K27me3).
View Article and Find Full Text PDFEMBO Rep
January 2025
Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
To directly examine the interplay between mutant p53 or Mdm2 and wild type p53 in gene occupancy and expression, an integrated RNA-seq and ChIP-seq analysis was performed in vivo using isogenically matched mouse strains. Response to radiation was used as an endpoint to place findings in a biologically relevant context. Unexpectedly, mutant p53 and Mdm2 only inhibit a subset of wild type p53-mediated gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!