Maturation of the hepatitis A virus capsid protein VP1 is not dependent on processing by the 3Cpro proteinase.

J Virol

Unité de Virologie Moléculaire, URA CNRS 1966, Institut Pasteur, Paris Cedex 15, France.

Published: August 1999

AI Article Synopsis

  • The study reveals that the hepatitis A virus (HAV) polyprotein processing is primarily mediated by the 3Cpro proteinase at the 2A/2B junction, but its role in VP1 maturation is questioned.
  • Research using a recombinant expression system showed that 3Cpro does not cleave the VP1-2A precursor, suggesting that VP1 maturation is not reliant on this viral proteinase.
  • The findings imply that the maturation of the VP1 capsid protein may rely on a different cellular proteinase rather than 3Cpro, indicating a unique processing mechanism for HAV.

Article Abstract

Most details of the processing of the hepatitis A virus (HAV) polyprotein are known. Unique among members of the family Picornaviridae, the primary cleavage of the HAV polyprotein is mediated by 3Cpro, the only proteinase known to be encoded by the virus, at the 2A/2B junction. All other cleavages of the polyprotein have been considered to be due to 3Cpro, although the precise location and mechanism responsible for the VP1/2A cleavage have been controversial. Here we present data that argue strongly against the involvement of the HAV 3Cpro proteinase in the maturation of VP1 from its VP1-2A precursor. Using a heterologous expression system based on recombinant vaccinia viruses directing the expression of full-length or truncated capsid protein precursors, we show that the C terminus of the mature VP1 capsid protein is located near residue 764 of the polyprotein. However, a proteolytically active HAV 3Cpro that was capable of directing both VP0/VP3 and VP3/VP1 cleavages in vaccinia virus-infected cells failed to process the VP1-2A precursor. Using site-directed mutagenesis of an infectious molecular clone of HAV, we modified potential VP1/2A cleavage sites that fit known 3Cpro recognition criteria and found that a substitution that ablates the presumed 3Cpro dipeptide recognition sequence at Glu764-Ser765 abolished neither infectivity nor normal VP1 maturation. Altered electrophoretic mobility of VP1 from a viable mutant virus with an Arg764 substitution indicated that this residue is present in VP1 and that the VP1/2A cleavage occurs downstream of this residue. These data indicate that maturation of the HAV VP1 capsid protein is not dependent on 3Cpro processing and may thus be uniquely dependent on a cellular proteinase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC112698PMC
http://dx.doi.org/10.1128/JVI.73.8.6220-6227.1999DOI Listing

Publication Analysis

Top Keywords

capsid protein
16
3cpro proteinase
12
vp1/2a cleavage
12
hepatitis virus
8
3cpro
8
hav polyprotein
8
hav 3cpro
8
vp1-2a precursor
8
vp1 capsid
8
vp1
7

Similar Publications

AAV Capsid Modification and Its Influence on Viral Protein Stoichiometry and Packaging Fitness: Current Understandings and Future Direction.

Mol Biotechnol

January 2025

Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa.

The field of gene therapy has witnessed significant advancements in the utilization of Adeno-associated virus (AAV) owing to its inherent biological advantages. Targeted AAV vectors are generated through genetic or chemical modification of the capsid for user-directed purposes. However, this process can result in imbalances in viral protein sequence homogeneity, stoichiometry, and functional transduction vector units, thereby introducing new challenges.

View Article and Find Full Text PDF

hsa-miR-548d-3p: a potential microRNA to target nucleocapsid and/or capsid genes in multiple members of the Flaviviridae family.

Front Bioinform

January 2025

Hakim's Lab, Department of Biology, School of STEM, Diné College, Tuba City, AZ, United States.

Introduction: Flaviviridae comprise a group of enveloped, positive-stranded RNA viruses that are mainly transmitted through either mosquitoes or tick bites and/or contaminated blood, blood products, or other body secretions. These viruses cause diseases ranging from mild to severe and are considered important human pathogens. MicroRNAs (miRNAs) are non-coding molecules involved in growth, development, cell proliferation, protein synthesis, apoptosis, and pathogenesis.

View Article and Find Full Text PDF

Maturation inhibitors (MIs) block HIV-1 maturation by preventing the cleavage of the capsid protein and spacer peptide 1 (CA-SP1). Bevirimat (BVM), a first-in-class MI, displayed sub-optimal efficacy in clinical trials due to presence of SP1:V7A polymorphism in the Gag protein.This polymorphism is inherently present in HIV-1 subtype C and conferred resistance to BVM.

View Article and Find Full Text PDF

Cervical cancer is a significant global health threat, ranking as the fourth most common malignancy among women and resulting in over 300,000 deaths annually. Although screening and vaccination initiatives have led to a decline in incidence rates, treatment options for advanced or recurrent cervical cancer remain inadequate, often proving ineffective and costly. In this context, adenoviral therapy has emerged as a promising strategy to enhance therapeutic outcomes.

View Article and Find Full Text PDF

Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!