A triply cloned strain of xylella fastidiosa multiplies and induces symptoms of citrus variegated chlorosis in sweet orange.

Curr Microbiol

Fundo Paulista de Defesa da Citricultura (Fundecitrus), Av. Dr. Adhemar Pereira de Barros, 201, 14807-040, VI. Melhado, Araraquara, Sao Paulo, Brazil.

Published: August 1999

Xylella fastidiosa isolate 8.1.b obtained from a sweet orange tree affected by citrus variegated chlorosis in the state of Sao Paulo, Brazil, and shown in 1993 to be the causal agent of the disease, was cloned by repeated culture in liquid and on solid PW medium, yielding triply cloned strain 9a5c. The eighth and the 16th passages of strain 9a5c were mechanically inoculated into sweet orange plants. Presence of X. fastidiosa in sweet orange leaves of shoots having grown after inoculation (first-flush shoots) was detected by DAS-ELISA and PCR. Thirty-eight days after inoculation, 70% of the 20 inoculated plants tested positive, and all plants gave strong positive reactions 90 days after inoculation. Symptoms first appeared after 3 months and were conspicuous after 5 months. X. fastidiosa was reisolated from sweet orange leaves, 44 days after inoculation. These results indicate that X. fastidiosa strain 9a5c, derived from pathogenic isolate 8.1.b by triply cloning, is also pathogenic. Strain 9a5c is now used for the X. fastidiosa genome sequencing project undertaken on a large scale in Brazil.http://link. springer-ny.com/link/service/journals/00284/bibs/39n2p106.html

Download full-text PDF

Source
http://dx.doi.org/10.1007/s002849900428DOI Listing

Publication Analysis

Top Keywords

sweet orange
20
strain 9a5c
16
days inoculation
12
triply cloned
8
cloned strain
8
xylella fastidiosa
8
citrus variegated
8
variegated chlorosis
8
isolate 81b
8
orange leaves
8

Similar Publications

The publication of several high-quality genomes has contributed greatly to clarifying the evolution of citrus. However, due to their complex genetic backgrounds, the origins and evolution of many citrus species remain unclear. We assembled de novo the 294-Mbp chromosome-level genome of a more than 200-year-old primitive papeda (DYC002).

View Article and Find Full Text PDF

Rain cracking compromises quality and quantity of sweet cherries worldwide. Cracking susceptibility differs among genotypes. The objective was to (1) phenotype the progeny of a cross between a tolerant and a susceptible sweet cherry cultivar for cuticle mass per unit area, strain release on cuticle isolation, cuticular microcracking and calcium/dry mass ratio and (2) relate these characteristics to cracking susceptibilities evaluated in laboratory immersion assays and published multiyear field observations.

View Article and Find Full Text PDF

Organophosphate pesticides can cause long-term neurological damage to humans. There is an urgent need to develop a more sensitive and efficient method for detecting trace amounts of organophosphorus pesticides in orange juice, particularly in the presence of interfering substances. This study developed a dispersive solid-phase extraction (DSPE) method using amorphous UiO-66 (aUiO-66) as an adsorbent for the detection of four organophosphate pesticides (fenthion, profenofos, fensulfothion, and chlorpyrifos) in orange juice.

View Article and Find Full Text PDF

Resazurin dye is an in vivo sensor of kidney tubular function.

Kidney Int

December 2024

Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA. Electronic address:

Glomerular filtration rate (GFR) is the main functional index of kidney health and disease. Currently, no methods are available to directly measure tubular mass and function. Here, we report a serendipitous finding that the in vitro cell viability dye resazurin can be used in mice as an exogenous sensor of tubular function.

View Article and Find Full Text PDF

Integrated Transcriptome and Metabolome Analysis Reveals Insights into Flavone and Flavonol Biosynthesis in Salicylic Acid-Induced Huanglongbing Tolerance.

J Agric Food Chem

December 2024

Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, Florida 32611, United States.

Salicylic acid (SA) exhibits positive effects against Huanglongbing (HLB), but how SA affects citrus resistance to HLB is currently unknown. This study conducted integrated transcriptome and metabolome analyses on SA-treated (HLB-sensitive) and (HLB-tolerant). The results indicated that the syntheses of flavones and flavonols were induced by SA, while the expression levels of associated genes and the contents of corresponding metabolites varied significantly between the two species after SA treatment or HLB infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!