Radiolabelled tumour receptor-binding peptides can be used for in vivo scintigraphic imaging. Recently, the somatostatin analogue [Tyr3]octreotide (D-Phe-c(Cys-Tyr-D-Trp-Lys-Thr-Cys)-Thr(ol)) was derivatized with the chelator DOTA (tetra-azacyclododecane-tetra-acetic acid), enabling stable radiolabelling with both the high-energy beta particle-emitter yttrium-90 and the Auger electron-emitter indium-111. The thus produced radiolabelled compounds are promising for peptide receptor radionuclide therapy. Our previous in vitro and in vivo (rat) experiments with these radiolabelled compounds showed favourable binding and biodistribution characteristics with high uptake and retention in the target organs. We also demonstrated receptor-specific, time- and temperature-dependent internalization of radiolabelled [DOTA0,Tyr3]octreotide in somatostatin receptor subtype 2 (sst2)-positive rat pancreatic tumour cell lines. In this study we have investigated the effects of differences in the amount of injected peptide on tissue distribution of 111In-labelled [DOTA0, Tyr3]octreotide in normal, i.e. non-tumour-bearing, and CA20948 tumour-bearing rats. This was done in order to find the amount of peptide at which the highest uptake in target tissues is achieved, and thereby to increase the potential of radionuclide therapy while simultaneously ensuring the lowest possible radiotoxicity in normal organs. Uptake of radiolabelled [DOTA0,Tyr3]octreotide in sst2-positive organs showed different bell-shaped functions of the amount of injected peptide, being highest at 0.05 (adrenals), 0.05-0. 1 (pituitary and stomach) and 0.25 (pancreas) microg. Uptake in the tumour was highest at 0.5 microg injected peptide. The highest uptake was found at peptide amounts that were lower than those reported for [111In-DTPA0]octreotide ((D-Phe-c(Cys-Phe-D-Trp-Lys-Thr-Cys)-Thr(ol), DTPA = diethylene-triamine-penta-acetic acid), consistent with the higher receptor affinity of the first compound. Our observations of mass-dependent differences in uptake of radiolabelled [DOTA0, Tyr3]octreotide, being the resultant of a positive effect of increasing amounts of peptide on, for example, receptor clustering and a negative effect of receptor saturation, are of consequence for rat radionuclide therapy studies with radiolabelled peptides and may also be of consequence for human radionuclide therapy studies with this compound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s002590050439 | DOI Listing |
Brachytherapy
January 2025
Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of life Sciences and Medicine, University of Science and Technology, Hefei, Anhui 230022, PR China. Electronic address:
Purpose: To compare the effectiveness and safety of CT-guided iodine-125 seed brachytherapy in conjunction with chemotherapy against chemotherapy alone for the management of intermediate and advanced non-small cell lung cancer (NSCLC) lacking oncogenic driving genes.
Methods And Materials: Retrospective analysis was conducted on clinical data from 128 patients diagnosed with intermediate and advanced non-small cell lung cancer who received iodine-125 combined with chemotherapy or chemotherapy alone due to the absence of oncogenic driver gene mutations. The patients in two groups were compared at 6-month follow-up for objective remission rate (ORR), Disease control rate (DCR), local progression-free survival (LPFS), overall survival (OS), clinical symptom improvement, and adverse events.
Theranostics
January 2025
Departments of Radiology, Washington University in St. Louis, MO 63110, USA.
Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).
View Article and Find Full Text PDFNarra J
December 2024
Department of Physiology, Faculty of Medicine, Universitas Andalas, Padang, Indonesia.
Iodine has an anti-proliferative effect on cancer cells; however, its effects have not been explored adequately. The aim of this study was to evaluate the therapeutic potential of iodine and radioiodine by assessing their effects on the viability of various breast cancer cell lines: MCF7, SKBR3, and MDA-MB231. The viability of cells was measured in treated cells exposed to six doses of iodine (5, 10, 20, 40, 60, 80 µM) and two doses of radioiodine (3.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.
Purpose: To evaluate the added value of additional Ga-FAPI PET/CT following CT for primary staging, detection of postoperative recurrence, and management of gastric cancer patients.
Methods: We retrospectively included patients with gastric cancers who underwent contrast-enhanced computed tomography (ceCT), followed by Ga-FAPI PET/CT within 30 days. Ga-FAPI PET/CT was performed for initial staging or detection of postoperative recurrence.
J Nucl Med Technol
January 2025
Department of Radiology and Nuclear Medicine, University Hospital of Southern Denmark, Esbjerg, Denmark.
Gated equilibrium radionuclide angiography (ERNA), or multigated acquisition scanning, is a well-established technique to monitor left ventricular ejection fraction (LVEF) in patients treated with potentially cardiotoxic chemotherapy. To determine the results of a true change in LVEF, low inter- and intrareader variability is important. The aim of this study was to investigate inter- and intrareader variability in LVEF measurements using 2 different commercially available software packages with cardiac MR (CMR) as a reference standard.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!