Discrimination by Escherichia coli initiation factor IF3 against initiation on non-canonical codons relies on complementarity rules.

J Mol Biol

Laboratoire de Biochimie UMR7654 du CNRS, Ecole Polytechnique, Palaiseau Cedex, 91128, France.

Published: July 1999

Translation initiation factor IF3, one of three factors specifically required for translation initiation in Escherichia coli, inhibits initiation on any codon other than the three canonical initiation codons, AUG, GUG, or UUG. This discrimination against initiation on non-canonical codons could be due to either direct recognition of the two last bases of the codon and their cognate bases on the anticodon or to some ability to "feel" codon-anticodon complementarity. To investigate the importance of codon-anticodon complementarity in the discriminatory role of IF3, we constructed a derivative of tRNALeuthat has all the known characteristics of an initiator tRNA except the CAU anticodon. This tRNA is efficiently formylated by methionyl-tRNAfMettransformylase and charged by leucyl-tRNA synthetase irrespective of the sequence of its anticodon. These initiator tRNALeuderivatives (called tRNALI) allow initiation at all the non-canonical codons tested, provided that the complementarity between the codon and the anticodon of the initiator tRNALeuis respected. More remarkably, the discrimination by IF3, normally observed with non-canonical codons, is neutralised if a tRNALIcarrying a complementary anticodon is used for initiation. This suggests that IF3 somehow recognises codon-anticodon complementarity, at least at the second and third position of the codon, rather than some specific bases in either the codon or the anticodon.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.1999.2881DOI Listing

Publication Analysis

Top Keywords

non-canonical codons
16
initiation non-canonical
12
codon-anticodon complementarity
12
initiation
9
escherichia coli
8
initiation factor
8
factor if3
8
translation initiation
8
bases codon
8
anticodon initiator
8

Similar Publications

Draft genome sequence of sp. CC302I with non-canonical biosynthetic gene clusters for codon-readthrough activity.

Microbiol Resour Announc

January 2025

Industrial Genomics Laboratory, FEMSA Biotechnolgy Center, School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, México.

sp. CC302I was isolated from a highly oligothrophic environment. High-throughput screening shows high codon-readthrough activity for the isolate with no canonical biosynthetic gene cluster responsible.

View Article and Find Full Text PDF

The phylum Heterolobosea Page and Blanton, 1985 is a group of eukaryotes that contains heterotrophic flagellates, amoebae, and amoeboflagellates, including the infamous brain-eating amoeba Naegleria fowleri. In this study, we investigate the deep evolutionary history of Heterolobosea by generating and analyzing transcriptome data from 16 diverse isolates and combine this with previously published data in a comprehensive phylogenomic analysis. This dataset has representation of all but one of the major lineages classified here as orders.

View Article and Find Full Text PDF

Chemical inhibition of eIF4A3 abolishes UPF1 recruitment onto mRNA encoding NMD factors and restores their expression.

Biochem Biophys Res Commun

February 2025

Université Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000, Besançon, France. Electronic address:

Nonsense-Mediated mRNA Decay (NMD) is a key control mechanism of RNA quality widely described to target mRNA harbouring Premature Termination Codon (PTC). However, recent studies suggested the existence of non-canonical pathways which remain unresolved. One of these alternative pathways suggested that specific mRNA could be targeted through their 3' UTR (Untranslated Region), which contain various elements involved in mRNA stability regulation.

View Article and Find Full Text PDF

Defining serine tRNA knockout as a strategy for effective repression of gene expression in organisms with a recoded genome.

Nucleic Acids Res

January 2025

Division of Pharmacoengineering and Molecular Pharmaceutics, The University of North Carolina at Chapel Hill, 125 Mason Farm Rd. Chapel Hill, NC 27599, USA.

Whole genome codon compression-the reassignment of all instances of a specific codon to synonymous codons-can generate organisms capable of tolerating knockout of otherwise essential transfer RNAs (tRNAs). As a result, such knockout strains enable numerous unique applications, such as high-efficiency production of DNA encoding extremely toxic genes or non-canonical proteins. However, achieving stringent control over protein expression in these organisms remains challenging, particularly with proteins where incomplete repression results in deleterious phenotypes.

View Article and Find Full Text PDF

Cov-trans: an efficient algorithm for discontinuous transcript assembly in coronaviruses.

BMC Genomics

December 2024

School of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, Shandong Province, 266071, China.

Background: Discontinuous transcription allows coronaviruses to efficiently replicate and transmit within host cells, enhancing their adaptability and survival. Assembling viral transcripts is crucial for virology research and the development of antiviral strategies. However, traditional transcript assembly methods primarily designed for variable alternative splicing events in eukaryotes are not suitable for the viral transcript assembly problem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!