Various bioceramic materials were implanted into 6-mm-diameter holes made in the femoral condyles of mature Japanese white rabbits using different-sized granules to find an optimal material and granule diameter for use as a bone graft. Bioceramics include a bioinert ceramic (Alumina), surface-bioactive ceramics [hydroxyapatite (HAp) and Bioglass(R)], and resorbable bioactive ceramics [alphatricalcium phosphate (alpha-TCP), beta-TCP, tetracalcium phosphate (TeCP), Te. DCPD, Te. DCPA, and low-crystalline HAp]. Granule sizes were 100-300, 10, and 1-3 microm. Bone growth behavior varied with the kind of bioceramic and the size used. For surface-bioactive ceramics, 45S5 Bioglass(R) led to more rapid bone proliferation than synthetic HAp. In resorbable bioactive ceramics, the order of resorption was: low-crystalline HAp and OCP > TeCP, Te DCPD, Te DCPA > alpha-TCP, beta-TCP. In terms of biocompatibility, alpha-TCP was better than beta-TCP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/(sici)1097-4636(199901)44:1<31::aid-jbm4>3.0.co;2-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!