The catalytically inactive precursor of urokinase-type plasminogen activator (pro-u-PA) induced a chemotactic response in rat smooth muscle cells (RSMC) through binding to the membrane receptor of urokinase (u-PA receptor [u-PAR]). A soluble form of u-PAR activated by chymotrypsin cleavage as well as a peptide located between domain 1 and 2 of u-PAR reproduced the effect of pro-u-PA on cell migration. The chemotactic pro-u-PA effect correlates with a dramatic reorganization of actin cytoskeleton, of adhesion plaques, and with major cell shape changes in RSMC. Pro-u-PA induced a decrease in stress fiber content, membrane ruffling, actin ring formation, and disruption leading to the characteristic elongated cell shape of motile cells with an actin semi-ring located close to the leading edge of cells. u-PAR effects on both chemotaxis and cytoskeleton were sensitive to pertussis toxin and, hence, possibly require G proteins. u-PAR effects are accompanied by a relocation of u-PAR, vitronectin receptor (VNR) alphavbeta3, beta1 integrin subunit, and Src tyrosine kinase to the leading membrane of migrating cells. In conclusion, our data show that pro-u-PA, via binding to u-PAR, controls a signaling pathway, regulated by tyrosine kinases and possibly G proteins, leading to cell cytoskeleton reorganization and cell migration.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chemotaxis cytoskeleton
8
cytoskeleton reorganization
8
rat smooth
8
smooth muscle
8
muscle cells
8
pro-u-pa induced
8
cell migration
8
cell shape
8
u-par effects
8
u-par
6

Similar Publications

MinD proteins regulate CetZ1 localization in .

Front Microbiol

November 2024

Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.

CetZ proteins are archaea-specific homologs of the cytoskeletal proteins FtsZ and tubulin. In the pleomorphic archaeon , CetZ1 contributes to the development of rod shape and motility, and has been implicated in the proper assembly and positioning of the archaellum and chemotaxis motility proteins. CetZ1 shows complex subcellular localization, including irregular midcell structures and filaments along the long axis of developing rods and patches at the cell poles of the motile rod cell type.

View Article and Find Full Text PDF

Objective: Low-intensity pulsed ultrasound (LIPUS) is a promising modality for neuromodulation. Microglia are the resident immune cells in the brain and their mobility is critical for maintaining brain homeostasis and alleviating neuroimmune pathologies. However, it is unclear whether and how LIPUS modulates microglial migration in physiological conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Primary atopic disorders (PAD) are rare genetic conditions caused by specific gene variants that affect skin and immune function, making diagnosis challenging among common allergic disease cases.
  • Identifying PAD requires recognizing clinical red flags like family history and unusual infections, as conventional lab tests are inadequate for definitive diagnosis.
  • Whole-genome sequencing (WGS) enhances diagnostic efficiency and accuracy, but requires careful interpretation and collaboration among specialists to effectively manage PAD cases.
View Article and Find Full Text PDF

Citrus pectin modulates chicken peripheral blood mononuclear cell proteome in vitro.

Poult Sci

December 2024

Department of Veterinary and Animal Sciences, Università Degli Studi di Milano, 26900, Lodi, Italy. Electronic address:

Citrus pectin (CP) is a dietary fiber used in animal nutrition with anti-inflammatory properties. CP downregulates chicken immunoregulatory monocytes' functions, like chemotaxis and phagocytosis, in vitro. The molecular underlying background is still unknown.

View Article and Find Full Text PDF

Type II diabetes mellitus (T2D) is a chronic metabolic disease and a risk factor for cardiovascular disease and cerebrovascular dysfunction including vascular dementia. Sex differences in the prevalence of T2D, dementia, and global genomic changes in the brain have been observed; however, most studies have been performed in males. Therefore, our aim was to evaluate the consequence of T2D on cognitive function and decipher the underlying molecular transcriptomic mechanisms of endothelial cells in an important brain memory center, the hippocampus, using a female murine diabetes model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!