Smooth muscle cells (SMCs), before migration and proliferation in the intima of the vessel wall, change from a normal contractile to a pathological proliferating phenotype. The molecular regulatory mechanisms implicated in such phenotypic changes remain poorly understood. In this study, using differential display, we have isolated for the first time a new gene (2A3-2) that is overexpressed in a rapidly proliferating, but not synthetic, rat SMC line. This was further confirmed by northern blot performed on the 2 cell types. Moreover, balloon catheter injury of rat carotids showed, by a virtual northern technique, an upregulation of this new gene in hyperplasia vessels. This new gene (2A3-2, 1.2 kb) was present in skeletal muscle, heart, aorta, lung, liver, kidney, and spleen. In addition, 5' rapid amplification of cDNA ends (5' RACE) allowed the cloning and sequencing of this 1.2-kb gene. Comparison of this newly identified gene sequence with data banks showed a strong homology to human and bovine mitochondrial translational elongation factor. The 2A3-2 gene, identified in this study, may play a vital role in the cascade of events implicated in switching SMC phenotype from a quiescent to a proliferate one.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.atv.19.7.1650 | DOI Listing |
Arterioscler Thromb Vasc Biol
July 1999
INSERM Unit 331, Faculty of Medicine Laënnec, Lyon, France.
Smooth muscle cells (SMCs), before migration and proliferation in the intima of the vessel wall, change from a normal contractile to a pathological proliferating phenotype. The molecular regulatory mechanisms implicated in such phenotypic changes remain poorly understood. In this study, using differential display, we have isolated for the first time a new gene (2A3-2) that is overexpressed in a rapidly proliferating, but not synthetic, rat SMC line.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!