Introduction: The strong protective effect of the ALDH2*2 mutation on risk of alcoholism suggests that other mutations that reduce mitochondrial aldehyde dehydrogenase (ALDH) activity in the liver might also deter drinking. This study describes a polymorphic locus found in the promoter of the ALDH2 gene that affects expression of reporter constructs.
Methods: Polymerase chain reaction (PCR)-based sequencing was used to search for polymorphisms. The ability of the promoter variants to bind transcription factors apolipoprotein A regulatory protein 1 (ARP-1) and chicken ovalbumin upstream promoter-transcription factor (COUP-TF) was tested in gel retardation assays using in vitro synthesized transcription factors. The variant promoters were tested for transcriptional activity using a heterologous promoter system and transient transfection assays.
Results: A common polymorphism (A or G) in the human ALDH2 promoter region was found at -361 base pair (bp) from the translation start site. This polymorphism was found at different frequencies in African Americans, Caucasians, and Asians. The polymorphism occurs adjacent to the core binding motif for the transcription factors COUP-TF and ARP-1. Competition and binding affinity determinations did not show differences in the ability of these two sequences to bind the factors. Reporter genes containing these elements upstream of a basal thymidine kinase promoter had similar activity when transfected into a fibroblast (CV-1) cell line. However, the reporter containing the G allele was more active than that containing the A allele in hepatoma (H4IIEC3) cells.
Conclusions: The -361 bp A/G polymorphism is common in all racial groups tested. The G allele was more active than the A allele in a transfection assay. The basis for this difference is not known. If the differences in activity of the promoter constructs were paralleled by differences in ALDH2 enzyme activity in the liver, this polymorphism could affect risk of alcoholism.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!