Allelic loss of 17p13.3 is observed in approximately 40% of medulloblastomas, suggesting the presence of a tumor suppressor gene in this region. Deletion mapping has defined a region of common loss flanking the telomeric marker D17S34, and a recent report delineated a 9-kb homozygous deletion within the D17S34 locus in one such tumor. Using cDNA selection, we have identified a transcript spanning this deletion, designated (HSA)RPH3AL (rabphillin-3A-like), based on its 77% overall amino acid identity with a recently cloned rat gene, (RNO)Rph3al (originally termed Noc2), a gene putatively involved in regulated endocrine exocytosis through its interactions with the cytoskeleton. We determined the exon-intron boundaries of RPH3AL and screened the coding region for mutations by direct sequencing in DNA extracted from 33 tumor samples with allelic loss of 17p13, including 10 medulloblastoma, 14 follicular thyroid cancer (FTC), and 9 ovarian cancer specimens. No mutations were identified. Thus, despite its location in a homozygously deleted 17p13.3 locus, it is unlikely that RPH3AL is a gene involved in the oncogenesis of medulloblastoma, FTC, or ovarian cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/geno.1999.5864 | DOI Listing |
Neoplasma
December 2024
Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Department of Pediatrics, Taihe County People's Hospital, Fuyang, Anhui, China.
Background: Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of brain disorders. Variants in the Rho-related BTB domain-containing 2 gene (RHOBTB2) can lead to DEE64, which is characterized by early-onset epilepsy, varying degrees of motor developmental delay and intellectual disability, microcephaly, and movement disorders. More than half of the variants are located at Arg483 and Arg511 within the BTB domain; however, the underlying mechanism of action of these hotspot variants remains unexplored.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland.
Temozolomide kills cancer cells by forming O6-methylguanine (O6-MeG), which leads to cell cycle arrest and apoptosis. However, O6-MeG repair by O6-methylguanine-DNA methyltransferase (MGMT) contributes to drug resistance. Characterizing genomic profiles of O6-MeG could elucidate how O6-MeG accumulation is influenced by repair, but there are no methods to map genomic locations of O6-MeG.
View Article and Find Full Text PDFAnn Med Med Res
August 2024
Department of Pediatrics, Children's Foundation Research Institute at Le Bonheur Children's Hospital, University of Tennessee Health Science Center, USA.
GDP Dissociation Inhibitor 2 (GDI2) plays a crucial role in maintaining cellular homeostasis by regulating Rab GTPases involved in vesicular transport. This review highlights the importance of GDI2 in various biological processes, particularly embryonic development, apoptosis regulation, cancer, and immune responses. GDI2's essential function in embryonic development is evidenced by the embryonic lethality observed in GDI2 knockout mice.
View Article and Find Full Text PDFFront Oncol
January 2025
Clinical Research Center, Changzhi People's Hospital Affiliated to Changzhi Medical College, Changzhi, China.
Background: The Apoptosis-Stimulating Protein of P53 (ASPP) family contributes to apoptosis regulation and tumor suppression, with ASPP1 influencing processes like cancer cell proliferation, invasion, and migration. Its expression varies across cancer types, suggesting a potential role in oncogenesis.
Methods: This study investigates ASPP1's role across various cancers using a comprehensive bioinformatics approach.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!