Inhibitors of bacterial growth in urine: what is the role of betaines?

Int J Antimicrob Agents

Department of Pathology, Christchurch School of Medicine, Christchurch Hospital, New Zealand.

Published: May 1999

It has long been recognised that some individuals produce urine that is inhibitory to uropathogens. This may be partly explained by inhibitors. Several inhibitors have been identified in urine including urea and organic acids. Bacteria adapt to high osmolarity by activating osmoregulated betaine porters and accumulating organic osmolytes intracellularly. The preferred substrate is glycine betaine, which is present in urine, and promotes rapid growth by balancing osmotic forces and stabilising macromolecular structures against the toxicity of urea and low pH. Other dietary betaines such as trigonelline may also be taken but enhance urea toxicity. The importance of such compounds in vivo is unknown.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0924-8579(99)00033-3DOI Listing

Publication Analysis

Top Keywords

inhibitors bacterial
4
bacterial growth
4
urine
4
growth urine
4
urine role
4
role betaines?
4
betaines? long
4
long recognised
4
recognised individuals
4
individuals produce
4

Similar Publications

Following a period of disuse owing to the emergence of multidrug-resistant Gram-negative bacteria, colistin has regained global attention as an antibiotic of last resort. The resurgence in its utilization has led to a concurrent increase in acquired resistance, presenting a significant challenge in clinical treatment. Predominantly, resistance mechanisms involve alterations in the lipid A component of the lipopolysaccharide (LPS) structure.

View Article and Find Full Text PDF

Virtual screening of potential inhibitors of the ATPase site in Acinetobacter baumannii DNA Gyrase.

Comput Biol Med

January 2025

Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, 54714, Mexico. Electronic address:

Bacterial resistance is a global public health problem because of the ineffectiveness of conventional antibiotics against super pathogens. To counter this situation, the search for or design of new molecules is essential to inhibit the key proteins involved in several stages of bacterial infection. One of these key proteins is DNA gyrase, which is responsible for packaging and unfolding of DNA chains during replication.

View Article and Find Full Text PDF

Crude glycerol (CG), a major biodiesel production by-product, is the focus of ongoing research to convert it into polyhydroxyalkanoate (PHA). However, few bacterial strains are capable of efficiently achieving this conversion. Here, 10 PHA-producing strains were isolated from various media.

View Article and Find Full Text PDF

Ciprofloxacin, a widely used second-generation fluoroquinolone for treating bacterial infections, has recently shown notable anticancer properties. This review explores progress in developing ciprofloxacin derivatives with anticancer properties, emphasizing key structural changes that improve their therapeutic effectiveness by modifying the basic group at position 7, the carboxylic acid group at position 3, or both. It further investigates the mechanisms by which these derivatives fight cancer, such as inducing apoptosis, arresting the cell cycle, inhibiting topoisomerase I and II, preventing tubulin polymerization, suppressing interleukin 6, blocking thymidine phosphorylase, inhibiting multidrug resistance proteins, and hindering angiogenesis.

View Article and Find Full Text PDF

In recent years, a number of synthetic potentiators of antibiotics have been discovered. Their action can significantly enhance the antibacterial effect and limit the spread of antibiotic resistance through inhibition of bacterial cystathionine-γ-lyase. To expand the known set of potentiators, we developed methods for the synthesis of five new representatives of 6-bromoindole derivatives-potential inhibitors of bacterial cystathionine-γ-lyase-namely potassium 3-amino-5-((6-bromoindolyl)methyl)thiophene-2-carboxylate () and its 6-bromoindazole analogs ( and ), along with two 6-broindazole analogs of the parent compound .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!